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Abstract—A key aspect of Federated Learning (FL) is the
requirement of a centralized aggregator to maintain and
update the global model. However, in many cases orchestrating
a centralized aggregator might be infeasible due to numerous
operational constraints. In this paper, we introduce BAFFLE,
an aggregator free, blockchain driven, FL environment that is
inherently decentralized. BAFFLE leverages Smart Contracts
(SC) to coordinate the round delineation, model aggregation
and update tasks in FL. BAFFLE boosts computational per-
formance by decomposing the global parameter space into
distinct chunks followed by a score and bid strategy. In order
to characterize the performance of BAFFLE, we conduct
experiments on a private Ethereum network and use the
centralized and aggregator driven methods as our benchmark.
We show that BAFFLE significantly reduces the gas costs for
FL on the blockchain as compared to a direct adaptation of the
aggregator based method. Our results also show that BAFFLE
achieves high scalability and computational efficiency while
delivering similar accuracy as the benchmark methods.
Index Terms—Blockchain based decentralization, Aggregator
Free Federated Learning, Ethereum driven Smart Contracts

1. Introduction
Federated Learning (FL) [1] is a distributed machine

learning paradigm that accomplishes large scale learning
tasks [2]. FL leverages data sets localized on end user
devices in order to ensure privacy. A fundamental assump-
tion of the FL paradigm is the presence of a centralized
aggregator meant to coordinate the global computational
progress. An aggregator discharges four main functions in
the FL paradigm. First, it is responsible for delineating the
global computational process into distinct rounds. Second, it
maintains a global estimate of the machine learning model
to be updated after every round. Third, the aggregator selects
the end user devices and sends a copy of the global model
estimate to each. Lastly, the aggregator performs the critical
step of updating the global model estimate based on the
local copies of selected user devices.

The requirement of central aggregator raises operational
challenges, especially in FL applications wherein the global
model is of vital operational and diagnostic value to the
end users [3], [4]. First, in many instances, implementing
a central aggregator might not be a feasible option due to
logistical challenges [3], [5]. Second, end users must trust
the aggregator’s selection and update mechanism for the
user devices and their local models respectively. In case
an aggregator holds a bias towards specific users, the final
global model might not generalize well [6]. Third, the central

aggregator results in a single point of failure for the FL task,
thereby raising robustness concerns [7]. Lastly, the central
aggregator is typically cloud based [1], [2]. Access to the
cloud, might be out of reach for small organizations due to
lack of technical skill and expertise [8]. As a result, a central
aggregator might induce a high barrier of entry for small
organizations which might be incapable of implementing
large scale FL tasks.

Blockchain based decentralization can be effectively
leveraged for alleviating operational issues with respect to
a centralized aggregator. However, careful consideration of
the computational constraints imposed by the blockchain is
required in order to realize an aggregator free FL scheme
[9]. First, storage of data and computation on the blockchain
incurs significant costs. Second, pushing an entire machine
learning model to the blockchain becomes computationally
bulky potentially incurring heavy latency due to consensus.
Lastly, there are limits on transaction size imposed by the
blockchain protocols that restrict the amount of data that can
be stored and updated on blockchain in a single transaction.
These computational constraints place limitations on the
model aggregation and update process in FL. Nevertheless,
the need for a scalable, low cost framework that retains
the benefits of aggregator free FL while fulfilling the
computational constraints of the blockchain has so far not
been addressed [9].

In this paper, we propose BAFFLE, a blockchain based
aggregator free FL environment. BAFFLE leverages Smart-
Contracts (SCs) to maintain the global model copy and
the associated computational state of the users. By its very
design, BAFFLE enables users to update the global model on
the SC independently and in parallel, leading to significantly
lower computational costs. On the operational front, for
a particular round, selection of end users in BAFFLE is
based on the worth of their local updates as assessed
by the SC. BAFFLE ensures that rounds are delineated
according to the reported computational state of all the users
thereby avoiding bias. Lastly, owing to a fully decentralized,
agggregator free approach, BAFFLE saves on cloud setup
and operational costs and eliminates technical expertise
requirements for maintaining centralized aggregators [10].
Therefore, BAFFLE is able to deliver high computational
efficiency while successfully eliminating the operational
limitations of an aggregator driven approach.

From a social standpoint, the computational benefits of
BAFFLE coupled with elimination of cloud based costs and
expertise requirements lowers the entry barrier for small orga-
nizations. BAFFLE can be used by micro scale organizations
on public or private blockchains to self organize and leverage



FL among their peers in a computationally friendly way. In
doing so, each organization in a community can preserve
their own data privacy but yet collaborate on building a
global model that helps address challenges common to the
entire community. As a result, BAFFLE can effectively be
used to empower communities of users who would otherwise
not have the capability to obtain robust machine learning
models for their own internal challenges.

In this paper, we show that BAFFLE is able to success-
fully circumvent operational constraints of FL and deliver
its benefits in a computationally sound manner. BAFFLE
consists of a budgeted approach towards the model update
and aggregation steps and leverages SCs to delineate the
rounds. We theoretically show that a classical FL scheme
is equivalent to a BAFFLE driven approach with a linear
relation between the respective learning rates. We provide
a practical, production level implementation of BAFFLE
on a private Ethereum network, with Solidity powered
SC deployments. We demonstrate the merits of BAFFLE
on a real world case study using a large Deep Neural
Network(DNN) model. Based on our case study, we perform
exhaustive experiments to study the user benefits, robustness
and scalability of BAFFLE compared to other benchmarks.
Our results indicate that BAFFLE provides superior compu-
tational performance despite the highly restrictive constraints
imposed by the blockchain.

Our paper is organized as follows. In Section 2 we
provide an overview of related work pertaining to the fields
of blockchain and decentralized ML. Section 3 discusses
the novel strategies employed in BAFFLE to circumvent the
restrictions imposed by the blockchain. Section 4 provides an
overview of the local and global computational perspectives
of BAFFLE. Section 5 introduces a real world case study
of improving driver revenue where an aggregator free FL
mechanism could be highly beneficial. Section 6 deals with
the entire set of experiments and their analysis. We conclude
the paper in Section 7 in addition to providing a quick
overview of future work.

2. Related Work
Improving a global neural network model using dis-

tributed data with a privacy-preserving purpose was first
studied in [11]. The authors provide a scheme of jointly
learning an accurate model by multiple parties for a given
objective. More specifically, they consider a global shared
memory model where parameters of the global model are
held. Various agents participating in this framework can
update a random subset of global parameters based on their
local training.

Federated Learning was later proposed in [1], [12] with
its theoretical basis explored in [13]. The authors provide an
effective method for building collective knowledge across a
set of devices while preserving their individual autonomy
and privacy. More recently, there have been renewed efforts
to scale up the FL framework as presented in [2]. Such
frameworks consider multiple aggregators headed by a master
in order to manage the entire FL process. Although the work

proposes a distributed network of aggregators coordinated
by a master, it is not inherently aggregator free.

Recent works [14], [15] propose a framework of fully
decentralized FL in which users update their belief by
aggregating information from neighbors. While the theo-
retical aspect of decentralized FL is explored in these works,
numerous system and architectural issues persist in achieving
true decentralization. As a result, such systemic issues need
to be dealt with in order to obtain a FL framework that is
feasible under practical settings.

Practical efforts to integrate AI onto the blockchain are
largely confined to white paper proposals without any tan-
gible real world implementations available. The framework
proposed in [16] designs an SC based machine learning
platform allowing users to upload tasks as well as contribute
models to solve existing tasks. A distributed, AI computing
platform has also been proposed in [17] where mining nodes
earn their income from processing AI models.

There are also several projects that integrate federated
learning into blockchain technologies. The work done in [18]
supports implementing the FL framework into the mining
mechanism of the underlying blockchain platform. However,
owing to modification requirements to the underlying con-
sensus protocols such approaches tend to be cumbersome to
implement on off the shelf blockchain platforms. The work
done in [9] proposes and implements a decentralized AI
framework using the blockchain. However, a key requirement
of this framework is that training data from devices needs to
be published on the blockchain. As a result, the data privacy
benefits of FL paradigm is eliminated. In fact, the authors
note that a decentralized, blockchain based AI framework
with full user data privacy is a key component of their future
work.

Despite the above mentioned attempts, a concrete, practi-
cal framework for realizing decentralized aggregator free FL
is so far lacking both in research and in industrial domains.
To the best of our knowledge, BAFFLE is one of the first
attempts at a production-level decentralized FL platform
that could run over existing blockchain networks such as
Ethereum.

3. Smart FL Contract Design: Decentralizing
Role of Aggregator
As mentioned in Section 1, a number of technical aspects

need to be considered in order to make the FL process
aggregator free. In this section, we examine the salient
features of BAFFLE that allows us to circumvent blockchain
based system constraints without compromising on solution
quality. Even though BAFFLE has been implemented and
evaluated on the Ethereum platform, the same technical
principles would extend over to other blockchain based SC
platforms as well.

3.1. Chunking
Most blockchain platforms have an upper limit pertaining

to the data size of each transaction. For the Ethereum Virtual
Machine (EVM) with the version we have used, this limit has



been set to 24 kB by default. Such a limitation immediately
results in a bottleneck for an aggregator free FL scheme
since the underlying machine learning models are usually
significantly larger than the block sizes. Such a system
induced constraint necessitates the need for partitioning
the machine learning model weight vector into numerous
chunks such that each chunk size is less than the maximum
transaction size. However, chunking in turn introduces a few
other notable aspects with regards to model sharing that can
be described as follows.

3.1.1. Serialization
Since storage on the SC is expensive, the machine

learning model needs to be stored in a serialized format.
However, partitioning the model after serialization could
lead to inconsistencies. Therefore, for a specific FL task, it
is important to first generate a partitioning scheme that must
be used by all agents followed by individual serialization
of the chunks. Such a chunk-and-serialize scheme has
numerous benefits. First, the chunks can be read to and
written from independently and seamlessly. Second, such an
independence among chunks can be exploited for parallel
updates from multiple devices at the same time. Lastly, a
chunk independence scheme also leads to a potential scoring
technique wherein parts of the model can be evaluated for
their worth.

3.1.2. Budgets
A potential benefit of chunking is that user devices are

empowered to decide their levels of contribution individually.
Since, pushing chunks on the blockchain involves a compu-
tational cost as well as miner fees, users can independently
evaluate their own cost to benefit ratio and decide the number
of chunks that they wish to update in a round. The maximum
limit on the number of chunks that a user device wishes
to update is referred to as the budget for that device. As a
result the set of budget values from all user devices can be
heterogenous in nature.

3.2. Scoring and Bidding
Each chunk is assigned a score by the end user devices

themselves based on a norm difference with respect to the
latest available global copy. Depending on a random selection
the user device submits bids on a set of chunks as allowed
by the budget limit. The SC receives bids on a diverse set
of chunks from different user devices in every round. For
chunks on which multiple bids were submitted, the device
submitting the maximum score is chosen as the sole updater
of the chunk.

3.3. Delineation of Rounds
Owing to the decentralized nature of our approach, the

onus of delineating the rounds rests with the end user devices
themselves aided by the information maintained on the SC.
Specifically, a Participation Level (PL) is chosen for every
FL learning task which specifies the number of agents which
must have submitted their bids in order for the round to
start. Once the participation level criteria is met, the round

begins and no new devices are allowed to participate. Devices
upload the chunks on whom their bids were accepted and
proceed to signal a close of their round.

4. Computational Perspectives of BAFFLE
The entire aggregator free blockchain based FL paradigm

presented by BAFFLE can be viewed in terms of two
important perspectives. The local perspective comprises of
the computational steps undertaken by the user devices and
their interaction with the blockchain. The global perspective
details the SC driven scheme geared towards executing the
various FL steps in an aggregator free setting.

4.1. User Oriented Local Computation
Locally, users interact with the blockchain through a

client process that interfaces with the acquired user data.
The client process is responsible for local training followed
by leveraging the deployed SC in order to push the local
model to the blockchain. Therefore, training and blockchain
interaction form the two important aspects for every user
device participating in BAFFLE.

4.1.1. Local Training
User devices continuously observe new data points from

their environment which can be leveraged for the FL task
at hand. The user device pulls the latest available model
from the blockchain through the SC. The globally acquired
model is averaged with the latest available local copy. The
resulting model is used to train on the locally available data
to yield a new local model estimate. It is this new model
estimate that now becomes a candidate for being pushed to
the blockchain in the subsequent round.

Average with Local
Model

Perform Local
Training

Figure 1. Flowchart depicting the sequence of events at the agent level

4.1.2. Model Aggregation and Update
In order to aggregate with the other devices and push its

update to the chain, every agent considers the local model
copy obtained after local training. The steps taken by the



Algorithm 1 Agent driven SC based update mechanism (on
Agent j)

initialize partition scheme C, local model Qj
0

for k = 0 . . . do
obtain Qc,∀c ∈ C from blockchain using SC
compute Qj,c

k+1 ←
Qc+Qj,c

k

2 ,∀c ∈ C
perform local training and update Qj

k+1
if round is open for participation then

choose chunks C̃k ⊆ C, |C̃k| = B randomly
calculate scores δc = ||Qc −Qj,c

k+1||, ∀c ∈ C̃k

submit bids [c, δc],∀c ∈ Ck to SC
determine accepted chunk set Ck ⊆ C̃k

push Ck to blockchain
end if

end for

user device for model aggregation and update can be traced
with the help of the flowchart depicted in Figure 1 and
summarized concisely in Algorithm 1. Each user device is
initialized on the basis of a fixed partition scheme denoted
by set of chunks C with a maximum budget B. Let Qc, Qj,c

represent the estimate of parameters contained in chunk
c on the SC and agent j respectively. For round k, user
devices pull the global model copy, average with local copy,
perform local training and check for the round status. In
case a round is already underway and thus inactive, the
user device returns to the task of collecting new data. If a
round is active and accepting bids, devices choose randomly
from their local chunks based on their budget size. A scalar
score δc is assigned to each chunk based on the norm of
the difference of the local weights with the global weights
copy. These scores form the basis of the bid submitted to
the SC which decides on which user device gets to update
which chunk during round k.

4.2. Globally Relevant Blockchain Driven FL
Scheme

Globally, the computational process employed by BAF-
FLE is divided into three distinct phases. We illustrate the
global computational perspective with the help of an example
shown in in Figure 2. In our example we consider a BAFFLE
system comprising of 5 asset devices A1, A2, A3, A4, A5
respectively. The model is divided into 5 chunks C1, C2,
C3, C4 and C5. For this example, we consider a PL value
of 4. In Phase 1, each device performs local training and
aggregation to generate new bids. Next, every device attempts
to submit bids for its randomly chosen chunks. The bids
chronologically arrive in the order A1, A3, A5, A4 and A2.
In Phase 2, owing to the PL value being met with the arrival
of bids from A4, A2 is rejected from the current round.
The accepted devices push the respective chunks for which
their bids were accepted. In Phase 3, every device eventually
signals the culmination of all its local steps to the SC to
mark the end of Phase 3 as well as the current round.

The SC responsible for the global aggregation scheme
follows a contract-oriented design principle. Fields of sig-

nificance contained in the SC are listed in Table 4.2. For
each attribute, we have set up an appropriate modifier that
restricts the access to modify the value. In particular, the
modifier for the AI Model data is designed only for the
potential FL contributors that can benefit from the global
model updated by the participants.

From a theoretical perspective, using Lemma 1, we
show that the global computational process is equivalent
to classical FL scheme with a learning rate scaled by a
constant.

Lemma 1. Given a BAFFLE framework and its aggregator
driven counterpart with learning rates ηBFL, ηFL respec-
tively, involving a total of C chunks with L participating
agents each possessing a maximum budget potential of
B ≤ C, the following relation holds

ηBFL =
2 · C · (C −B + 1) · αFL

B · L · αBFL
· ηFL

where αFL, αBFL are the probability that an agent is
selected for model aggregation for aggregator free decen-
tralized FL and the classical FL respectively.

Proof. We know that for SGD the following relation holds:

ŵk+1
i = ŵ0

i − η
k∑

t=1

∇f(ŵt)i (1)

where ŵk
i is the estimate of the ith component of the weight

vector at round k, η is the learning rate. Further, ∇f(ŵk)i
is ith component of the gradient estimated based on the
globally available weight vector.

In case of BAFFLE, we can say that

ŵk+1
i =

1

2
[ŵk

i + ŵk
i − ηBFL∇f(ŵt)i] (2a)

ŵk+1
i = ŵk

i −
ηBFL

2
∇f(ŵt)i (2b)

Therefore, if at the tth round, device jt is active and the ith
component is chosen, it follows that the expected value of
the weight vector is given by:

E[ŵk+1
i ] = ŵ0

i −
ηBFL

2
E

[
k∑

t=1

∇fjt(ŵt)i

]
(3)

At every round, we also assume that the probability of user
device jt being selected is denoted by αBFL. Given a budget
size B, the total number of chunks C, devices choosing their
chunks randomly subject to budget B, the probability of
picking the chunk containing the ith weight element, is then
determined as follows:(

C − 1

B − 1

)
/

(
C

B

)
=

B

(C −B + 1)C
(4)

Therefore, Equation (3) is equivalent to:

E[ŵk+1
i ] = ŵ0

i −
ηBFL

2

 k∑
t=1

αBFL

n∑
j=1

B∇fjt(ŵt)i
(C −B + 1)C


(5)
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Figure 2. Global computational steps

TABLE 1. SC ATTRIBUTES IN BAFFLE

Attribute Description
Model ID Unique identifier assigned for every FL task by the SC

Round Registration Details List of users with submitted bids for the upcoming round
Participation Level The minimum number of users with submitted bids required to begin a round

Chunk Core A data structure for every chunk holding: last updated time;
Array last user to update; set of submitted scores & their owners

which leads to:

E[ŵk+1
i ] = ŵ0

i −
B.ηBFLαBFL

2(C −B + 1)C
E

 k∑
t=1

n∑
j=1

∇fjt(ŵt)i


(6)

On the other hand, with aggregator driven FL, with L user
devices aggregated in each round, we can similarly state:

E[ŵk+1
i ] = ŵ0

i −
ηFL.αFL

L

 k∑
t=1

n∑
j=1

∇fjt(ŵt)i

 (7)

where αFL, ηFL is the probability of choosing a device
and the learning rate of aggregator driven FL respectively.
Therefore, equating Equations (6) and (7), we can say that
with a learning rate ηBFL given by Equation (8) BAFFLE
is equivalent to classical FL with learning rate ηFL.

ηBFL =
2.C.(C −B + 1)αFL

B.L.αBFL
.ηFL (8)

We now proceed to illustrate the benefits of BAFFLE
on a real world case study involving the improvement of
driver revenue for the taxi and ride sharing industry.

5. Case Study: Improving Taxi Driver Revenue
with BAFFLE
A key problem in the taxi and ride sharing industry is to

improve driver revenue by reducing idle time [19]. Drivers

are often unable to find passengers at certain locations in
the city at varying points of time during the day due to
low demand [19]. As a result, they usually hover around the
same location until they find a passenger. Idling time reduces
vehicle utilization and leads to potential loss in revenue for
the individual driver [20].

The application of machine learning to improve driver
revenue by reducing idle time has been studied before [19],
[20], [21]. Based on existing work, a Deep Reinforcement
Learning (DRL) scheme is demonstrated to provide good
quality improvement in driver revenues [21]. However,
these approaches assume the presence of a centralized
coordinator to steer the RL process. A central repository
of ride information presents several privacy issues which
have been successfully exploited to de-anonymize passenger
information [22]. The work done in [23] as an extension of
[21] introduces privacy preserving features and distributed
computation as a means to improve driver revenue. However,
[23] assumes a hierarchical computational setup that prevents
all the benefits of decentralized computations from being
realized in their entirety. The requirements of multiple
control centres to perform the learning tasks leads to limited
applicability of such approaches.

5.1. Benefits of Aggregator Free FL for Improving
Driver Revenue

The taxi and ride sharing industry is a perfect example
of micro scale enterprises that could benefit significantly
from an aggregator free FL approach. The ride sharing



and taxi industry remains largely an unorganized market
where setting up a trusted coordinator remains a challenging
proposition. Even in case of a central data repository,
extracting intelligence from the anonymized data proves
to be a futile exercise [22]. Moreover, drivers usually also
do not have access to sophisticated computing platforms
on which they could orchestrate learning tasks to improve
their revenue. Therefore, a decentralized aggregator free FL
environment allows drivers to leverage their collective ride
experiences and improve their revenue without sharing their
private ride data itself.

5.2. Deep Batch Reinforcement Learning for Taxis
We use a batch DRL paradigm to learn the Q function

values and employ the Deep Neural Fitted Q [24] method
to accomplish our learning task. Specifically, we define our
states and actions as follows:

• Pickup State si:<pickup location, pickup time >
• Dropoff State s′i:<dropoff location, dropoff time >
• Action a: action (dropoff location)
• Reward r: fare

State is defined by S × T , where S is set of discrete cells
that divide the city into distinct grids. T is set of 96 discrete
intervals of 15 mins each for 24 hours. Therefore, given
N rides, we denote the ride set H = {(si, ai, s′i, ri),∀i ∈
{1, . . . , N}}.

Q̃k(si, ai) = ri + γmax
b
Qk(s

′
i, b),∀i ∈ H (9a)

Qk+1 ← Q̃k − η∇Q̃(si, ai) (9b)

Equations (9a) and (9b) govern the functioning of the batch
DRL framework at the kth round. The Q function is updated
based on Equation (9a) before being trained on the DNN
using Equation (9b).

Algorithm 2 BAFFLE for Improving Driver Revenues
for taxi: j = 1 . . . P do

initialize model Qj
0 = Qinit, budget B

initialize chunk set C based on given partition scheme.
for k = 0 . . . do

observe new ride set Hk

pull latest available model Q from blockchain
perform averaging Qk ←

Qj
k+Q

2

update Q̃j
k based on Equation (9a)

locally train Qj
k+1 via Equation (9b)

employ Algorithm 1 to push updates to SC
end for

end for

In Algorithm 2, we consider P taxis and begin by
initializing all user devices to the same initial state. Next the
partition information and SC details is loaded on each device.
The user devices utilize a new set of rides accumulated
locally in every round. The local estimate of the Q function
is updated and trained locally based on Equations (9) before
being pushed onto the blockchain using the SC update
mechanism illustrated in Algorithm 1.

5.3. Data and Benchmarking Techniques
For our case study, we used the NYC taxi data set

[25] for our experiments. Specifically, we randomly chose
2 million rides pertaining to May 2018 which was divided
into two equal parts to denote the training and testing data
sets. Restricting the rides specifically for the area of lower
Manhattan resulted in approximately a little more than half
million rides each in training and test data sets. The training
set was used to assign rides to taxis participating in the FL
process.

On the basis of the test set, we determine 50 taxi
trajectories which form a benchmark for FL tasks based
on work done in [20]. Each trajectory comprises of 50 rides
and assumes idling in case no ride is found. The sum total of
fares accrued from the 50 benchmark trajectories is referred
to as the Aggregated Simulation Revenue (ASR) which forms
the No Learning (NL) baseline for our case study.

The benchmark trajectories and the accompanying sim-
ulation procedure are also used to calculate ASR values
for various DRL models as well. However in this case,
instead of hovering in the same location upon not finding
a ride, the DRL model in question is used to determine a
new location to transition into [20]. The sum total of fares
from the ensuing trajectories denotes the ASR value for the
DRL model being considered. For robustness purposes, we
perform this simulation multiple times for any DRL model
and report the average ASR value.

We derive a RandomDFL mechanism that is inspired
by the work done in [11] that can be directly applied
for orchestrating a naive aggregator free FL approach.
RandomDFL is described in detail in Section B

6. Experiments
In order to evaluate the efficacy of BAFFLE, we focus on

four key experiments. We perform a benchmark study where
we compare the potential benefits from BAFFLE with respect
to classical FL as well as other non FL paradigms. Next, we
examine the trends arising from varying number of chunks
as well as budget sizes of user devices. We then move onto
a scalability analysis that demonstrates the impact of varying
the total number of active user devices on the model quality.
Lastly, we demonstrate the robustness of BAFFLE to the
participation level (PL) parameter of BAFFLE. Further, we
also show superior computational performance of BAFFLE
compared to the best possible aggregator free approach
inspired by the current state-of-the-art.

6.1. Experimental Setup
BAFFLE was implemented and evaluated on a private

Ethereum blockchain setup exclusively for our computational
experiments. We employed go-ethereum, an official
go based implementation of the Ethereum protocol [26]
to orchestrate our private blockchain comprising of 16
Ethereum nodes. Proof-Of-Authority was used as the primary
consensus protocol for all our experiments. The SC layer
was developed using the Solidity programming language and
deployed on the private blockchain using go-ethereum.



The private blockchain was deployed on an Intel Xeon CPU
with a clock rate of 2.40 GHz with 16 cores and 2 threads per
core. We used OpenMPI [27] in conjunction with mpi4py
[28] to spawn multiple distributed memory client processes
intended to simulate the user devices on the field. Each client
process was assigned to a single core of an Intel i7 CPU
consisting of 12 cores. We used a 2 layer DNN with 500
perceptrons in each layer for our experiments on Keras [29]
with a TensorFlow [30] backend.

6.2. Benefits Study

TABLE 2. BENEFIT ANALYSIS

Category ASR (USD) Benefit (%)
No Learning (NL) 13387.31 -

Local Learning (LL) 16106.02 20.31
Classical FL (CFL) 18495.94 38.16

BAFFLE 18442.21 37.75

In this experiment we compare the benefits accrued by
drivers participating in BAFFLE with respect to two other
types of learning paradigms. The first comprises of a Local
Learning (LL) mechanism, wherein no model aggregation is
involved. The second paradigms pertains to an aggregator
driven Classical FL(CFL) scheme. We considered each taxi
having accumulated approximately 700 rides in each round
for a total of 50 rounds. For the FL cases we considered
16 taxis whereas for the LL case, we considered a single
taxi. Table 2 presents the results with respect to LL, CFL
and BAFFLE mechanisms in terms of their ASR value and
benefit relative to the NL baseline.

The trends depicted in Table 2 provide numerous key
insights into the performance of BAFFLE. Primarily, we
observe that BAFFLE is able to provide a benefit of
approximately 38% which rivals the CFL approach. Further,
we observe that BAFFLE and CFL approaches improve
driver benefit by close to 18% as compared to the LL case.
Overall, the results demonstrate that blockchain driven FL
paradigms are highly capable of delivering good quality
machine learning models in an aggregator free, decentralized
fashion.

6.3. Sensitivity Analysis

TABLE 3. FINAL BENEFIT (%) BASED ON AVERAGE ASR

Chunk No. Of Budget Size
Size (kB) Chunks 16 24 32

2 738 38.32 38.18 36.51
4 356 36.37 36.87 39.17
8 181 40.23 34.79 38.11
16 88 39.07 38.82 38.02

We perform a robustness study to analyze the impact of
variation in chunk sizes as well as local budget sizes on the
overall model quality. For this experiment, we considered
a total of 64 taxis, with each taxi having accumulated
approximately 70 rides in each round for 125 rounds overall.

TABLE 4. AVERAGE TOTAL TRAINING TIME(IN SECS) (STD DEV.)

Chunk Budget Size
Size (kB) 16 24 32

2 87.48(2.89) 85.97(3.26) 73.49(2.70)
4 79.92(3.18) 77.63(2.83) 73.22(3.87)
8 74.16(3.70) 71.90(2.53) 69.79(3.09)
16 73.44(4.01) 76.39(3.37) 71.79(3.51)

Table 3 shows the benefit percentage calculated for varying
chunk and budget sizes. Figure 3 represents the overall trends
with Figures 3(a), 3(b) depicting the boxplots pertaining to
Gas Costs, Push Time respectively. Table 4 shows the mean
and standard deviation with respect to the training time
incurred by the individual agents.

The results for all the combinations in Table 3 depict
benefits that closely mirror that of the CFL approach shown
in Table 3 on the same training set. Therefore, on the basis
of data presented in Table 3 one can conclude that BAFFLE
is significantly resilient to varying degrees of budget and
chunk sizes.

On the basis of Table 4, we conclude that time incurred
for training is marginal compared to the push time depicted
in Figure 3(b) for all combinations of budget and chunk
sizes. The relatively small training time implies that reducing
the total push time is critical in ensuring a computationally
efficient performance for a blockchain based FL mechanism.
We can therefore draw upon the trends shown in Figure 3
to reveal numerous key insights which elucidate the high
computational efficiency of BAFFLE.

Primarily, in Figure 3(a) we observe a smaller variation in
gas costs for the 2 kB chunk size irrespective of budget sizes.
However, as the chunk size increases we see the variation
in gas costs also increase substantially for all budget sizes.
Second, despite the increased variation, the mean gas cost
appears to saturate for higher chunk sizes. We also observe
that for the budget size of 32 after the initial uptick there
is a relatively more pronounced downward trend for higher
chunk sizes. This trend can be clearly attributed to the
scoring and bidding mechanism incorporated in BAFFLE.
Since a higher chunk size implies lesser number of chunks,
there is relatively more competition among user devices
to update the same set of chunks. As a result for higher
chunk sizes, only user devices which are able to consistently
contribute higher scoring chunks will incur a higher gas
cost. Therefore, owing to its underlying scoring and bidding
mechanism, BAFFLE is able to achieve significant savings
in gas costs for the users. Lastly, we observe that in Figure
3(b) despite the budget size increasing, the total push time
increases only marginally owing to the scoring and bidding
mechanisms. Therefore, we can safely say that BAFFLE is
successfully able to circumvent the computational bottleneck
posed by the push step of BAFFLE .

6.4. Scalability Analysis
We attempt to gauge the impact of the total number of

active user devices on the performance of BAFFLE. For
this experiment, we assumed each taxi having accumulated
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Figure 4. Weak Scaling trends

TABLE 5. SCALABILITY ANALYSIS WITH VARYING NO. OF TAXIS

Taxis Average ASR (USD) Benefit (%)
16 14489.59 8.2
32 16547.20 23.6
64 18266.72 36.44
128 18414.48 37.55

approximately 70 rides in each round for 62 rounds overall.
Table 5 represents the ASR value and the ensuing benefit
percentages for 16, 32, 64 and 128 taxis respectively. From
the trends presented in Table 5 it is apparent that increasing
number of user devices results in a sizeable improvement
in the model quality. However, the trends in Table 5 also
reveal that the improvement in model quality eventually
saturates with increasing active devices potentially indicating
a convergence to a globally superior model.

Figure 4 depicts the trends pertaining to the gas costs
as well as the push time with varying active user devices
in Figures 4(b) and 4(a) respectively. Figure 3(a) shows
a reduction in gas costs with increasing number of active
devices. However, Figure 4(b) reveals little variation of push
time with increase in active devices. The reduction in gas
costs in Figure 4(a) can be attributed to greater competition

arising from an increase in total number of devices. Moreover,
owing to a constant push time depicted in Figure 4(b) we
infer that increase in number of participants effectively leads
to reduction in gas costs in BAFFLE.

6.5. Participation Level (PL) Analysis
In this experiment we study the impact of varying the PL

on the performance of BAFFLE with 64 taxis, approximately
70 rides per round and a total of 62 rounds. Figure 5
presents results pertaining to PL values ranging from 5%
to 75%. Further, we also compare the RandomDFL case in
which devices update the global copy without any global
coordination. Figures 5(a), 5(b) and 5(c) represent the trends
pertaining to the growth in model quality, gas costs and the
total push time pertaining to varying PL in every round.

From Figure 5(a), we observe that the fastest convergence
of the model quality occurs in case of the RandomDFL case.
However, the convergence characteristics of BAFFLE with a
5% PL value closely mirrors the RandomDFL case. Overall,
the trends in Figure 5(a) generally indicate that a lower PL
value leads to a faster convergence. Figure 5(b) shows that a
lower PL value in BAFFLE incurs a lower gas cost as well.
Trends similar to Figure 5(b) are also exhibited in Figure 5(c)
wherein a lower PL value in BAFFLE corresponds to a lower
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Figure 5. Performance analysis with respect to Participation Level (PL)

total push time as well. We observe that in general, BAFFLE
incurs barely half the gas cost and push time as compared
to the RandomDFL case. In fact, BAFFLE outperforms the
RandomDFL case by a factor of more than 2 with a PL value
of 5% both in terms of the gas cost as well as the push time.
Since fewer devices are pushing to the global model copy
every round, the chances of multiple devices pulling the
same global model is significantly higher in case of a lower
PL value. This leads to greater stability in the decentralized
process which ultimately leads to a faster convergence for a
low PL value as shown in Figure 5(a).

BAFFLE incurs significantly lower gas costs compared
to the RandomDFL case owing to minimization of redundant
updates. Due to the decentralized round delineation and a
robust scoring and bidding process, devices only push chunks
that are among the best in the round. As a result, collision
among devices for the same chunk is completely eliminated
leading to a much lower gas cost and push time.

7. Conclusion and Future Work
In this paper we investigate the use of the blockchain

for realizing a decentralized aggregator free FL mechanism.
We design and develop BAFFLE, a custom made blockchain
based framework for aggregator free FL. In our framework,
we successfully eliminate the role of a centralized aggregator
by effectively decentralizing the concepts of round delin-
eation, user device selection and model aggregation with the
help of an SC. Further, in order to circumvent the compu-
tational restrictions imposed by the blockchain, we employ
an effective model partitioning and serialization mechanism
that enables independent and parallel model updates. We
orchestrate BAFFLE on a private Ethereum blockchain
network with a Solidity driven SC implementation. We
argue that the operational and computational benefits of
aggregator free FL has significant potential for solving
business problems for micro scale enterprises. We support
our claims by applying BAFFLE to a case study pertaining
to the ride sharing and taxi industry which serves as a perfect
example of a micro scale enterprise. Our case study utilizes

the BAFFLE framework to improve driver revenue based on
a DRL model that is collectively augmented by all drivers
using FL. We show that BAFFLE yields approximately a
40% improvement in driver revenues compared to non FL
approaches. We further show that despite being aggregator
free, BAFFLE’s result quality matches that of classical FL
schemes that require investment in an aggregator. Moreover,
BAFFLE performs significantly better compared to other
aggregator free approaches that are inspired by the current
state of the art.

Our work shows that an aggregator free approach to FL
offers significant potential for revolutionizing small scale
organizations and their businesses by delivering quality
machine learning models at lower costs. Driven by a robust
decentralized platform like the blockchain, the benefits of FL
could impact a variety of domains leading to its widespread
adoption. The issue of aggregator free FL opens up new
avenues for research especially in the blockchain domain.
Therefore, our future work is driven by the desire to incor-
porate other machine learning paradigms into the BAFFLE
framework. Primarily we intend to adapt BAFFLE towards
other deep learning paradigms and seek to incorporate
notions of differential privacy as well. Incorporating an
aggregator free FL for more complex paradigms like CNNs
and LSTMs will go a long way to enable wider adoption of
FL.
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Appendix
1. Centralized Deep Batch Q Learning

Algorithm 3 details the centralized batch Deep Q Learn-
ing for improving driver revenue. It starts with observation
of a new ride set every epoch. For every ride in the ride
set, the existing Q-value estimate is updated with the fare
collected for the ride and a discounted future reward. The
discounted future reward is based on the action that gives
highest Q value originating from the destination state. Based
on the observed set of rides, a Deep Neural Network (DNN)
is used to calculate the next Q function estimate.

Algorithm 3 Centralized Deep Neural Fitted Q
for k = 0 . . . do

observe new ride set Hk

pull latest available model Q from blockchain
perform averaging Qk ←

Qj
k+Q

2

update Q̃j
k based on Equation (9a)

locally train Qj
k+1 via Equation (9b)

end for

2. Random Decentralized FL (RandomDFL)

Algorithm 4 Randomized Decentralized Deep Neural Fitted
Q

for taxi: j = 1 . . . P do
for k = 0 . . . do

observe new ride set Hk

pull latest available model Q from blockchain
perform averaging Qk ←

Qj
k+Q

2

update Q̃j
k based on Equation (9a)

locally train Qj
k+1 via Equation (9b)

push random set of chunks Ck ⊆ C, |Ck| = B
end for

end for

In the randomized version represented in Algorithm 4,
the SC is considered to be naive. User devices are free to
update any chunks subject to their own budget values. In this
naive randomized version, some chunk updates are bound to
get wasted owing to the fact that they may be overwritten
by another user device’s contribution before the previous
update has had a chance to be read by the other agents.


