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Abstract—Cybersecurity of Industrial Control Systems (ICS) is
drawing significant concerns as data communication increasingly
leverages wireless networks. A lot of data-driven methods were
developed for detecting cyberattacks, but few are focused on
distinguishing them from equipment faults. In this paper, we
develop a data-driven framework that can be used to detect,
diagnose, and localize a type of cyberattack called covert attacks
on smart grids. The framework has a hybrid design that
combines an autoencoder, a recurrent neural network (RNN)
with a Long-Short-Term-Memory (LSTM) layer, and a Deep
Neural Network (DNN). This data-driven framework considers
the temporal behavior of a generic physical system that extracts
features from the time series of the sensor measurements that
can be used for detecting covert attacks, distinguishing them from
equipment faults, as well as localize the attack/fault. We evaluate
the performance of the proposed method through a realistic
simulation study on the IEEE 14-bus model as a typical example
of ICS. We compare the performance of the proposed method
with the traditional model-based method to show its applicability
and efficacy.

Index Terms—cybersecurity, industrial control system, smart
grid, LSTM

I. INTRODUCTION

Industrial control systems are collections of complex net-
works of interactive control and automation systems that are
widely used for control and monitoring in chemical, energy,
and manufacturing industries [1]. With the development of
sensor technology in the past few decades, modern industrial
control systems are generating a massive amount of data in
real-time, leveraging the system operations and monitoring
to wireless data communication. Although these technologies
bring novel insights to the optimization of system operations,
they also raise concerns about cybersecurity [2], [3]. Unlike
the common information systems, industrial control systems
belong to cyber-physical systems in which the cyber layer is
interactive with the physical layer. The computation and the
data transformation on the cyber layer enforces the operation
and management of the physical layer, which in turn generates
data that is fed back to the cyber layer. Because of these
operational control interactions, malicious attacks that impact
data integrity can cause physical damage to the system and
thus be particularly dangerous. For example, the outbreak of
the malware Stuxnet [4] in 2010 draws public attention to data
integrity attacks. The event showed such cyberattacks can truly
happen and cause severe damage to the critical infrastructures.

Therefore, data integrity becomes a very important factor for
cyber-physical systems [5].

Data integrity attacks often take over the programmable
logic controllers (PLC) and smart sensors, and manipulate
sensor measurements and/or control actions, while bypassing
the traditional detection schemes [6]. For example, false data
injections [7] refer to the attacks where the attacker only
manipulates the sensor measurements to mislead the state esti-
mation and further alter the control action. Replay attacks refer
to the attacks where the attacker manipulates the control action
and replays the sensor measurements recorded from normal
operations to disguise the malicious control. In this paper, we
focus on a more sophisticated type of integrity attack called
covert attack [8], where the attacker manipulates the control
action and disguises the malicious behavior by replacing the
sensor measurements with the simulated data based on the
original control input. The underlying assumption includes the
following: 1) The attacker has access to manipulate the control
actions and sensor measurements; 2) The attacker possesses
knowledge of the system behavior so that the simulated data
could represent the normal behavior of the system and can be
used to mask the malicious manipulation. The covert attack has
been proved to be able to be undetectable when the attacker
has access to all the sensors and full knowledge of the system
[8].

Aside from the difficulty in detecting these integrity attacks
like covert attacks, there are two challenges in cyberattack
identification for ICSs. The first one is the false alarms
triggered by natural equipment faults [9]. Although various
methods can successfully detect the cyberattack, few of them
consider the possibility that a natural equipment fault could
trigger false alarms. These false alarms can bring the unneces-
sary cost of inspections and even system shutdowns. The other
challenge is the localization [10]. Industrial control systems are
networks of multiple subsystems, which serve as the nodes in
the network. These nodes may operate individually but are
physically connected. Typical examples of ICS are found in
power networks, where a control center may be monitoring
multiple substations and power generation plants that are
geographically distributed, while being physically connected
by the transmission lines. Once a cyberattack is detected by
the control center, the next step is to determine the location of
the attack. Because of the complex interconnectivity among



these subsystems, the localization of the attack is nontrivial.
For example, a covert attack might impact multiple nodes
such that more than one will raise up alarms for detecting an
attack. Therefore, a diagnosis method needs to be developed
to localize the attack.

In this paper, we demonstrate the application of deep
learning towards the detection, diagnosis, and localization
of covert attacks. We focus on generic networked industrial
control systems and propose a data-driven framework that
combines an autoencoder, an RNN, and a DNN. We use
the RNN to characterize the system behavior under normal
operations. The output of the RNN together with the sensor
measurements are fed to a DNN classifier to detect, diagnose,
and localize the anomaly. We use the autoencoder to extract
features that represent the system status, as well as the spatial
correlation among the nodes, in an unsupervised manner. The
RNN captures the temporal behavior of the features extracted
by the autoencoder, and the DNN helps detect anomalies in
the system as well as diagnose whether it is an attack or fault.
By considering both the spatial and temporal behavior of the
system, this DL framework helps reduce false alarms triggered
by natural faults as well as localize the attack by extracting
the features that distinguish anomalies at different locations
and between attack and faults.

II. RELATED WORK

The literature on cyberattack detection for industrial control
systems can be divided into two groups: model-based detection
and data-driven detection.

Model-based methods rely on the engineering knowledge of
the physical rules to establish a parameterized model of the
normal sensor measurements [7], [11]-[14]. In [11], [12], and
[13], the observed sensor measurements are compared with
the estimated sensor measurements from these models, and
the residuals (i.e., the difference between the observations and
model estimations) are monitored to detect the anomalies. The
models are often established such that the expectation of the
residuals is approximately O under normal operations. During
monitoring, a large residual means a large discrepancy between
the model estimation and the observations, which indicates
anomalous behavior of the system. The x2 detector, for
example, tests the sum of squared residuals (SSR) and triggers
alarms whenever the SSR is above the threshold defined by
a x? distribution. The drawback of the model-based methods
is the complexity in establishing an accurate physical model,
especially when the system consists of multiple subsystems
with complex connections and correlations, both spatially and
temporally. For complex systems such as power systems, the
system model is usually represented by the steady-state power
flow equations, which takes the observations as independent
inputs and does not consider the system dynamics over time.

Compared to model-based methods, data-driven methods are
more flexible. A number of applications of machine learning
techniques have been developed for detecting cyberattacks.
However, most of them focus on designing intrusion detec-
tion systems based on the network traffic data [15]-[17].

If such intrusion detection systems fail, there is a lack of
backup detection scheme that detects cyberattacks based on
the physical process. On the other hand, unlike the behavior
of network traffic, the physical process has a relatively stable
and consistent dynamic behavior that does not change over
time. Therefore, a recurrent neural network can be used to
characterize the system behavior in a non-parametric manner,
especially when the complexity of the system obstructs the
establishment of a physics-based model. To take into con-
sideration network traffic data and the sensor data, in [18],
the authors proposed a multi-model data fusion and adaptive
deep learning method based on a convolutional neural network
to characterize the normal system behavior. The framework
then detects cyberattacks as well as physical intrusions in a
single ICS pertaining to water infrastructure. However, due
to the complexity of the proposed method, it would not be
applicable to a network of infrastructures, where a utility
operates multiple equipment (subsystems) with interactions at
the same time. Meanwhile, the establishment of such model
requires thorough understanding of the system, and it is hard
to generalize it to other systems.

III. SYSTEM MODEL

We consider a networked control system consisting of &
subsystems as shown in Fig. 1, where the subsystems are
not necessarily homogeneous, meaning there is not a single
model that can represent the behaviors of all the subsystems.
For example, a smart grid is a network of generation buses,
representing the power plants, and load buses, representing the
substations, and different models should be used to represent
the power plants and the substations. We denote the state of
the subsystem i at time ¢ by a vector xi, where z¢ € R, and
n; is the minimum number of variables needed to uniquely
define the system state of site ¢. Denote the history of state
of subsystem i till time ¢ as a7, = {x{, 2, ...,}}. The full
system state vector at time ¢, x, is given by a concatenation of
all the subsystem states. i.e, 7 = [z'7,...,2%T] € RN where
N =nj1 +ng+ ... +ng. Note that x is not directly observed,
but inferred from the measurements from the M (M > N
for system observability) sensors distributed throughout the
system. Similarly, we have y! = [y'7,...y*T] € RM
where M = mq + ms + ... + mg, and m; is the number
of sensors in subsystem 7. Denote the control action as
ul = [wT, .. u*] € RP, where u! € RPi and P =
p1+...+Dpi. Similarly, we denote the history of control actions
and measurements till time ¢ as ugy = {uo,u1,...,us} and
Yoy = {¥o, Y1, .-, Yt }» respectively.

In general, the dynamics of the networked system can be
represented by

oy = F(T-1y, Ufi—1});s €]
ye = Gi(zy), 2
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Fig. 1. Networked Industrial Control System

and a single subsystem ¢ can be represented by a recursive
function of x} as follows:

3)
“4)
Systems with linear dynamics where the Markovian property
holds, can be represented by a linear state-space model. For

an individual subsystem ¢ which operates independently, we
have:

zp = filzp—1y ug—1y)
Y = gi(x1)

zi = Ay + Biui_, (5)
(6)

When the subsystems are correlated with each other, the full
system can be modeled by

i i
yi = Cizy

= Azy_1 + Buy_1, (N

®)

where A, B, and C are functions of A;’s, B;’s, and C;’s. In
model-based methods, typically the above model is used to
build a state estimator (e.g., a Kalman filter) that estimates
2 based on the observed measurement y; and the previous
estimation Z;_;. The estimated Z is then substituted back into
the system model to predict the next measurement ¢; 1, which
is compared with the observed y;1 to obtain the residuals:

Yt = Cxta

T = Y — Ye.

When accurately parameterized, the above model is robust
and works well for simple systems. However, one disadvantage
of these physics-based models is the estimation of all the
parameters requires a large amount of data, and might cause
the identifiability issues. Therefore, We assume the intercon-
nectivity of these systems are complex to represent using a
physics-based model, this is true especially when the system
is nonlinear and the subsystems are interconnected.

Another disadvantage of the physics-based models is that
sometimes they do not consider the dynamic behavior of
the system or the temporal correlation in the data. In most
systems, the control actions are calculated based on a period
of historical data, or on a state estimation from the previous

time step. In this case, the temporal correlation is implicit,
and a steady-state estimation does not capture this type of
correlation. For example, in a power system, the state vector
x contains the control actions u; as well.

We note that the control actions can be represented by the
power generation setpoints. These setpoints can be determined
by solving an operational planning problem subject to the
system demand profile. Therefore, in this paper, we utilize the
well known Mixed Integer Unit Commitment (MIUC) [19] as
a means to compute our operational setpoints. The MIUC is
widely used in the power industry for operational planning
and can be formulated as follows (9):

migl cla+d'o (9a)
subject to Q9+ Ra=F (9b)
FO=H (9¢)

In Problem (9) « represents a binary vector of length |G| x T
indicating if generators are turned on or turned off across each
time epoch for each generator in the network, where |G| is
the number of generators. Similarly, 6 represents a real-valued
vector of dispatch variables specifying the level of production
on generators as well as the electric phase angles on separate
buses of length (|B| + |G|) x T, where |B| is the number of
buses.

Constraint (9b) ensures that the commitment and production
decisions are coupled along with ramp up (Q) and ramp down
(R) constraints found in unit commitment. Constraint (9¢)
enforces flow constraints (F) subject to the phase angle values
as well as the transmission line capacities (H).

As mentioned earlier, the implicit temporal correlation gen-
erated by calculating the control actions in a history-dependent
manner cannot be easily represented by any physics-based
model. On the other hand, the occurrence of an attack might
be easily captured by analysing the temporal behavior of the
system, while the steady state does not show any anomaly.
Therefore, data driven method, specifically RNN, well fits this
situation where temporal correlation needs to be captured via
data-driven techniques.



A. Covert Attack Model

The covert cyberattack was first proposed in [8] for a single
linear system as represented by functions 5 and 6. Specifically,
the attacker knows the values of B; and C;. Recall that a covert
attacker is assumed to possess access to control action and the
sensor measurements as well. Under these assumptions, the
attacker implements the covert attack by the following steps:

« First, the attacker manipulates the control actions using
the following equation
i = uj + ay, (10)
where 4} is the manipulated control action at time ¢, a; is
the attack signal added to the original control action u;.
According to 5, this manipulation will alter the system
state at ¢t + 1 by B;a;. That is,

(1)

The consequent sensor measurements will be biased by
C;B;a;. That is,

~i i
Ty = o + Biay

Uir1 = Yty1 + CiBiay. (12)
o Then, the attacker manipulates the sensor measurements
by subtracting the above bias. i.e.,

Uir1 = Uip1 — 7 (13)
where v = C;B;a;. In this way, the manipulated mea-
surement g3, ; is equal to the expected measurement
y;+1 without attack. Hence, the covert attack can be
successfully disguised, as the measurement is the only
output of the system, which means all the data inference
is conducted based on y.

In this work, we generalize the covert attack to nonlinear
systems represented by Equations (3) and (4). We assume the
attacker gains knowledge of the dynamics of subsystem ¢. This
could be taken as the attacker obtains an estimation of the
local functions fz and g; in Equations (3-4), which can serve
as the simulator of system ¢. With this knowledge as well as
the access to the control actions and sensor measurements, the
attacker conducts a covert attack using the following steps:

« First, the attacker reads the original control action u; and
simulates the expected sensor measurements using the
knowledge of subsystem ¢. That is,

(14)
5)

i’i—s-l = fi(l"{t}auit})a
z?iﬂ = gz‘(ﬁﬂ)-

o Then, the attacker manipulates the control actions as in
Eq. (10). According to Eq. (3), this manipulation will
alter the system state at ¢ + 1 as well as the sensor
measurements. That is,

(16)

a7

ji-qu = fi(x{t}vﬂitb)

Jip1 = 9i(Ti).

« Finally, the attacker replaces the consequent sensor mea-
surements with the simulated one. i.e.,
Uir1 < Jtya- (18)

Notice that we assume the attacker’s access to the sensors
is limited to subsystem ¢. This means the attacker is not
capable of compensating for the impact of attacking subsystem
1 on other subsystems. This fact lays the foundation for
our detection and localization framework. However, detecting
the attack in this case is nontrivial because the sensors that
are most informative of the attack are manipulated, while
the attack’s impact on other sensors does not have a clear
indication of the occurrence of an attack as well as its location.

IV. PROPOSED DETECTION FRAMEWORK

Sensor Measurements

Il

DNN
(Relu+Sigmoid+Softmax)

RNN
(LSTM+Dense) Residuals

Predictions

Classification
Normal
Attack + Location
Fault +Location

Predicted Measurements

Fig. 2. The proposed detection framework (AEN + RNN + DNN)

The structure of the proposed framework is shown in Fig.2.
The autoencoder is used for unsupervised feature extraction.
Essentially, it projects the sensor measurements to a lower
dimensional layer that filters out the noise and better rep-
resent the system status, which corresponds the steady-state
state estimation in traditional frameworks. We use an RNN
with an LSTM [20] layer to capture the nonlinear temporal
dependency and the correlation among all the variables and
extract the residuals. The RNN is used as a predictor, which
corresponds to the particle filters or Kalman filters in the tra-
ditional frameworks. The residuals together with the original
sensor measurements are fed into a DNN for detection as well
as diagnosis, and the DNN corresponds to the detection and
diagnosis schemes in the traditional frameworks.

Since the measurement y € R™ is obtained by the mea-
surement function G(-), which is a mapping from z in the
lower dimensional space R™. The correlation among the sensor
measurements is actually defined by the correlation among
the state variables. Therefore, we use an autoencoder (AEN)
to reduce the dimension of the sensor measurements, and for
generality, the code size (output size of the encoder) is chosen
as the dimension of the state vector, n. In our experiments,
the autoencoder (and decoder) consists of 2 dense hidden
layers with leaky ReLU activation functions. The encoded
sensor measurements is taken as the input to the RNN (in our



experiments, consisting of an LSTM layer followed by a dense
layer). The output of the RNN is then decoded to reconstruct
the predicted sensor measurements. The residuals are calcu-
lated as the difference between the observed measurements and
the predicted ones. Then, we concatenate the residuals with the
observed measurements, and the concatenated data are fed into
a DNN. The DNN used in our experiments contains 3 dense
hidden layers with ReLU, Sigmoid, and Softmax activation
functions in sequence. The output of the DNN determines
the type and location of the attack, designated by “normal”,
“attack+location”, and “‘fault+location”.

By the nature of covert attacks, the attacker has to obtain
accurate system knowledge to conduct a successful attack.
However, in reality, the complex subsystems are often ge-
ographically far apart from each other that makes it very
unlikely that an attacker can obtain the knowledge necessary
for attack, and get access to more than one subsystems.
Therefore, in this work, we assume that the attacker only
attacks one node, and it is less likely that faults on different
nodes happen to occur at the same time. Hence, there are at
most 2k + 1 independent possible conditions of the system,
including “normal”, {“attack on node i, i = 1,...,k”}, and
{“fault on node i, i = 1,...,k”}.

The autoencoder and the LSTM are trained using only the
data from normal operations. The DNN can be trained in
a supervised manner using labeled data from simulation or
historical data.

V. PERFORMANCE EVALUATION
A. Data Extraction

Fig. 3. The IEEE 14-Bus System!

We generate data via a simulation study on a smart grid.
We use the IEEE 14-bus (Fig. 3) to represent the smart
grid at the transmission level to generate the time series of
sensor measurements under different conditions. The model
contains 9 load buses (buses 4, 5, 7, and 9-14), representing
9 substations; 4 generation buses (buses 2, 3, 6, and 8),

Thttps://icseg.iti.illinois.edu/ieee-14-bus-system/

representing 4 power generation plants; and 1 slack bus (bus
1), which is used to balance the active and reactive power in
the system and also serves as a reference for all other buses.
The model has 20 edges, representing the 20 transmission
lines connecting the load and generator buses. The input to
the simulation is the load profiles of all the load buses and
the power generation plans of all the generation buses. We
obtain the load profile of each substation by aggregation the
load profiles of a random number of hourly residential power
consumption profiles extracted from Pecan Street [21]. The
generation plan is constructed using the method mentioned in
Section III. The simulation in Matlab uses Matpower [22] 7.0
to solve the power flow equation and add measurement noise.
The output of the simulation is the hourly time series of the 39
sensor measurements for the simulated period. The 39 sensor
measurements include the active power flow on each of the 20
transmission lines, the power generation of each generator bus
as well as the slack bus, and the voltage of all the 14 buses.

Recall that the mechanism of a covert attack is to alter
the system state by manipulating the control actions. Since in
the transmission system we are considering in this simulation,
most of the control happens in the power generation plants,
we only consider the covert attacks on the generator buses.
During the attack, the attacker decreases the generation level
by a specific portion. The reason we choose to decrease
the generation is from the attacker’s objective: compared to
generating more power than needed, decreasing the generation
will cause possible blackouts and overloading of other gener-
ators, which is likely to cause more damage to the system.
We simulate the covert attacks on each of the 4 generator
buses at 5 levels of severity, where the attacker decreases
the power generation by level 1: 20%, level 2: 40%, level
3: 60%, level 4: 80%, and level 5: 100% of the planned
generation. We assume the attacker obtains access to all the
sensors related to the attacked generator and manipulates the
sensor measurements by replacing the original values with the
ones obtained from simulation such that it shows the attacked
generator bus generates the same amount power as planned.
For comparison, we simulate the faults as the decrease of
power generation by the same amount caused by equipment
malfunctioning. The biggest difference between a fault and a
covert attack is there is no sensor data manipulation.

B. Numerical Results

We compare our proposed method with two benchmarks.
The first one uses the traditional state estimation (SE) residuals
for detection (Fig. 4). The state estimation is implemented
by solving the (nonlinear) static power flow equations using
Newton’s method [23], which is implemented in Matpower
7.0. The second method uses the same RNN model as in the
proposed model, but does not include the autoencoder (Fig.
5).

For the proposed model and the “RNN + DNN” model
mentioned above, we first calculate the first order difference of
observations to ensure the stationarity, and then standardize the
differences based on the standard deviation for each sensor. In
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this case, we use n = 14 as the code size of the autoencoder.
Usually for an AC k-bus system the state space has dimension
2(k — 1), consisting of the magnitudes and phase angles of
voltages at each bus. Since here we only care about the active
power and do not consider the phase angle, we use k—1 = 13
as the code size. The stateful LSTM uses 10 lags to predict the
next encoded observation. We train the autoencoder and the
RNN with 80% of the normal data, and keep them fixed when
generating the residuals for attack and fault series. Therefore,
the autoencoder and the RNN are only exposed to the normal
data, which can be used to represent the system behavior
under normal operations. The autoencoder and the RNN can
be viewed as a non-parametric substitute of the physics-based
models.

Since there are 39 sensors, the concatenation of residual
and observation data is of length 78. Since there are 4
generator buses considered, the output of DNN is a multi-
class classification of 9 labels listed in Tab I. The numbers
refer to the bus number where the attack/fault occurs.

We train the model with 80% of data and show the classi-
fication performance of the DNN by testing the model on the
rest 20% of data. The performance of the method is evaluated
by precision, recall, and the F1-score, which are shown in Tab.I
and Tab.II, where Tab.I shows the classification performance of
DNN among the 9 labels (normal, 4 attacks, and 4 faults), and
Tab.Il shows the classification among the 3 classes (normal,
attack, and fault) as well as the localization performance within
the attack and fault classes. The precision, recall, and F}-score
are calculated based on the number of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)
using the following equations:

TP

P .. _ =
recision TP+ FP

TP

TP+ FN
Precision - Recall

Recall =

=2 —
Precision + Recall

Tab.I and Tab.II show that for most of the cases, the proposed
method outperforms the other two methods in terms of detec-
tion as well as localization. In general, the SE+DNN model has
similar but slightly better performance than the RNN+DNN
model. However, both of them has a very low recall for attack
on bus #2. This is because in the network topology, bus #2
has a high degree — it has four neighbors, which is the highest
among the four generator buses. According to the proposed
generalization of covert attack in Section III, the attacker
manipulates all the sensors measuring the power flow on the
four edges. Intuitively, in this case the attacker has the highest
coverage of sensor accesses, which best covers the attack.
Since the state estimation only refers to the data at current
step and does not consider temporal correlation, it does not
give a good estimation of the underlying truth. On the other
hand, since the RNN is taking all the sensor measurements as
input, the prediction of RNN is relatively inaccurate due to the
noise in the sensor data. However, since the RNN considers
the temporal correlation, the performance of RNN + DNN
in this case is slightly better than SE + DNN. In contrast, the
proposed method uses an autoencoder for unsupervised feature
extraction, which helps filter out the noise in the data when
training the RNN. In this case, the RNN gives more precise
prediction of the data. Therefore, the residuals in this case
could better capture the anomaly caused by the attack.

We also show the Fj scores of the three methods under
different levels of attacks and faults in Fig.6. In general, the
proposed method has a better performance than the other
two, especially for attacks on bus #2. Another inspection
is that the F} score increases as the level (severity) of the
attack increases. This is a validation that the covertness (the
ability to stay undetected) of the attack decreases as the the
severity of attack increases, meaning the distinction between
normal data and the data under attack becomes clearer as
the severity of attack increases, leading to a higher detection
power and diagnosis accuracy. Moreover, it can be seen that
the performance of all three methods generally depends on the
connectivity of the attacked node — Attacks on bus #2 and #6
has lower detection rates because they have more neighbors.

To evaluate the performance of the proposed method when
encountering attacks that are not in training, we use a subset
of the attack levels to train the DNN and test it on the other
levels. We test the method by selecting [ (I = 1,2, 3,4) levels
among the five levels simulated. For each [, we replicate the
training and testing 20 times. Within each replication, the
attack levels for training is randomly selected. The boxplot
of testing accuracy is shown in Fig. 7. The result shows that
the proposed method has a relatively high accuracy when the
model is trained on more than 2 levels of attacks. Meanwhile,
as more attack levels are used in training the model, the testing
accuracy increases, and the variance of the accuracy decreases.
When the testing levels are out of the range of the training



TABLE I
PRECISION, RECALL, AND F SCORE FOR DNN CLASSIFICATION

Model | State Estimation + DNN | RNN + DNN | Autoencoder + RNN + DNN
Label | Precision Recall F Score | Precision Recall F Score | Precision Recall F Score
Normal 0.7330 0.9699  0.8350 0.7114 0.9803  0.8245 0.9980 0.9284  0.9619
Attack #2 0.8761 0.1943  0.3180 0.8361 0.2203  0.3487 0.9998 0.9813  0.9904
Attack #3 0.9985 0.9983  0.9984 0.9403 0.9921  0.9655 0.9773 0.9998  0.9884
Attack #6 0.9998 0.9920  0.9959 0.9867 0.8146  0.8924 1.0000 0.8640  0.9271
Attack #3 0.8645 0.9771 0.9173 0.9762 0.9046  0.9391 0.8918 0.9869  0.9369
Fault #2 0.9999 1.0000  1.0000 0.9947 0.9995  0.9971 0.9999 0.9987  0.9993
Fault #3 0.9925 0.9994  0.9959 0.9962 0.9774  0.9867 0.9997 0.9964  0.9981
Fault #6 0.9308 0.9806  0.9551 0.8971 0.8792  0.8881 0.7320 0.9977  0.8444
Fault #8 0.9572 0.9005  0.9280 0.9287 0.8930  0.9105 0.9729 0.8781  0.9231
TABLE II
PRECISION, RECALL, AND F SCORE FOR DETECTION AND LOCALIZATION

Model | State Estimation + DNN | RNN + DNN | Autoencoder + RNN + DNN

Label \ Precision  Recall F Score \ Precision ~ Recall F Score \ Precision  Recall F Score

Normal 0.7330 0.9699  0.8350 0.7114 0.9803  0.8245 0.9980 0.9284  0.9619

Attack 0.9778 0.7199  0.8292 0.9512 0.6817  0.7942 0.9900 0.9667  0.9782

Fault 0.9776 0.9885  0.9830 0.9683 0.9565  0.9624 0.9180 0.9896  0.9524

#2 0.9962 0.9468  0.9709 0.9685 0.9914  0.9798 0.9999 0.9815  0.9906

Attack #3 0.9999 1.0000  1.0000 0.9913 1.0000  0.9956 0.9819 0.9999  0.9908

#6 0.9999 1.0000  1.0000 0.9991 0.9869  0.9929 1.0000 1.0000  1.0000

#3 0.9460 0.9961  0.9704 0.9951 0.9565  0.9754 1.0000 1.0000  1.0000

#2 0.9999 1.0000  1.0000 0.9998 0.9999  0.9998 1.0000 1.0000  1.0000

Fault #3 1.0000 0.9999 1.0000 0.9996 0.9998  0.9997 1.0000 0.9999  1.0000

au #6 1.0000 1.0000  1.0000 0.9998 0.9992  0.9995 1.0000 1.0000  1.0000

#3 1.0000 1.0000  1.0000 0.9973 0.9980  0.9977 0.9997 1.0000  0.9998

levels, the performance is worse (e.g., the outliers for [ = 4 are
corresponding to the replications where the model is trained
with levels 2-5 and tested on level 1). This is because if the
data is trained on a stronger attack, the data from a weaker
attack would lie in between the clusters of normal data and
the attack data, and hence the DNN would have difficulty
classifying these data.

VI. CONCLUSION

In this paper, we proposed a generic data-driven framework
for detecting, diagnosing, and localizing covert attacks on
industrial control systems. The proposed framework uses an
autoencoder for unsupervised feature extraction from sensor
measurements, and then uses an RNN to capture the temporal
correlations among the encoded sensor measurements. The
prediction of the RNN is decoded and compared with the input
sensor measurements to get the residuals, which help detect
the anomaly. The residuals and the sensor measurements are
processed with a DNN to determine whether an observation
is representing normal conditions, an attack, or a fault, and to
identify the location of the attack/fault. The proposed frame-
work was compared with the model-based state estimation
technique, as well as a modification of itself by removing the
autoencoder. The results showed that the autoencoder helps
extract the important features from the data, as well as reduce
the dimension of the input to the RNN. This significantly

helps improve the classification accuracy of the DNN. It is
worth noticing that the RNN does not provide a more accurate
estimation of the state compared to the model-based state
estimation. However, since the RNN considers the temporal
behavior of the system, which is not considered by the mode-
based SE, the residuals obtained from the decoded RNN
prediction could better capture the anomalous characteristics
of the data when the system is under the attacks/faults. The
reason model-based SE does not perform well under covert
attack is because the objective of SE is to minimize the
residuals. This leverages the estimation of the state to normal
conditions, which does not represent the underlying truth,
especially when the attacker has access to more sensors. The
simulation study and performance evaluation validated the
proposed method. Since this method is model-free, it is easily
generalizable to other networked industrial control systems.

In this work, we only trained and tested the model on the
known attack/fault types. A future direction is to extend the
method to anomaly-based detection, which can detect novel
attacks and faults. Another direction is to combine the method
with graphical network topology, as well as the correlation
structure of the data.
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