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Abstract—With the onset of Cyber-Physical Systems (CPS),
distributed algorithms on Wireless Sensor Networks(WSNs) have
been recieving renewed attention. The distributed consensus
problem is a well studied problem having a myriad of applications
which can be accomplished using asynchronous distributed gossip
algorithms on Wireless Sensor Networks(WSN). However, a
practical realization of gossip algorithms for WSNs is found
lacking in the current state of the art. In this paper, we propose
the design, development and analysis of a novel in-situ distributed
gossip framework called INDIGO. A key aspect of INDIGO is
its ability to execute on a generic system platform as well as
on a hardware oriented testbed platform in a seamless manner
allowing easy portability of existing algorithms. We evaluate the
performance of INDIGO with respect to the distributed consensus
problem as well as the distributed optimization problem. We also
present a data driven analysis of the effect, certain operating
parameters like sleep time and wait time have on the performance
of the framework and emperically attempt to determine a sweet
spot. The results obtained from various experiments on INDIGO
validate its efficacy, reliability and robustness and demonstrate
its utility as a framework for the evaluation and implementation
of asynchronous distributed algorithms.

Index Terms—Asynchronous Distributed Gossip, System De-
sign, Distributed Consensus, Distributed Optimization

I. INTRODUCTION

Sensor networks are becoming an important part of mon-
itoring activities across various interdisciplinary domains.
They have been successfully applied to solve problems like
seismic activity monitoring and tomography[24], exploratory
geophysics [4], wildfire and wildlife monitoring[5] among
many things. Extracting optimal performance from sensors has
always been a challenge[6] and it has led to a flurry of active
research in recent times. Sensor networks come with their own
set of constraints which cannot be overlooked. For instance,
sensor networks often come with a very limited energy source,
which makes it imperative to use system resources judiciously
as well as keep communication costs at as minimum a level as
possible. It is also quite likely that due to energy constraints the
sensor network might be able to provide only limited amount
of bandwidth for data transfer which makes communication a
more precious affair.

Therefore, recent state-of-the art research in the area of
sensor networks suggests that the latest trends appear to
be focussing striking a balance between power consumption
attributed to communication and system utilization. With
sensor nodes becoming computationally more powerful and

less resource hungry, the bottleneck of communication as a
barrier for efficient utilization of system resources seems to
persist. Due to the rise of increasingly power efficient sensor
nodes it now makes more sense in some cases to delegate
computation based tasks to the nodes themselves than to
have them use up precious resources to depend on a central
entity for computation. In recent times, the interleaving of the
computational aspect of sensor networks with that of physical
processes such as sensing has opened up new research avenues
like Cyber-Physical Systems [23] and in-network computing
[12].

One such research problem in which the centralized ap-
proach to problem solving is less efficient than an in-network
approach is that of achieving consensus in a sensor network.
Consensus problem in sensor network deals with each node
arriving at a consensus of a measured parameter solely on the
basis of exchange of information with its neighbor nodes. In
order to achieve consensus in a network, an averaging problem
of the following form must be solved.

x̄ =
1

n

n∑

i=1

xi (1)

where, x1, x2 . . . xn are the individual observations recorded
by each of the n nodes in the network. For instance, a bunch
of nodes measuring the temperature of a room may do so by
relaying their measured values to a central sink or exchange in-
formation amongst themselves and arrive at an average which
would be the consensus. Mutual exchange of information is
highly beneficial as it cuts down on otherwise expensive multi-
hop communication to the sink. Although solving such a
consensus problem is a trivial task in a centralized setup, there
have been quite a number of research endeavors in the recent
past which propose a distributed decentralized approach.

As an extension of the distributed consensus problem, the
distributed consensus optimization problem has also been
studied. Distributed consensus optimization is of the following
form.

minimize F (x) =
1

n

n∑

i=1

fi(xi)

subject to xi ∈ χi
(2)

where xi,χi andfi are the local estimate of the observed value,
the set of constraints and the local objective function on the ith



node respectively. Distributed consensus optimization involves
using consensus to propogate information to other nodes in the
network and then solving a local optimization problem based
on fi known only to the ith node.

It is in this regard that the problem of asynchronous dis-
tributed gossip has been proposed for consensus as well as
consensus optimization in sensor networks. The idea is to be
able to solve a computationally intensive problem by mutual
exchange of information among nodes. The very basic case
of distributed gossip is the distributed consensus problem. By
attacking the distributed consensus problem, we can expect to
solve much more computationally intensive problems.

A. Purpose of Study

The distributed gossip approach is a very promising one in
the world of Cyber-Physical Systems [22]. In the recent past,
a key implementation of CPS has been in the area of seismic
monitoring [25][24]. As an extension of the above work, re-
search is being conducted for performing seismic tomography
[3]. Seismic tomography is the process of determining with
good accuracy, a profile of the earth under the surface. It
is extremely helpful in the area of geophysics for disaster
planning and preparedness. A tomography problem can be
modelled as a linear least squares problem of the following
form.

xLS = arg min
x

1

2
||Ax− b||22 (3)

where x ∈ Cn, A ∈ Cm×n and b ∈ Cm
Currently, most tomography approaches use a centralized

technique where information is relayed to a sink where the
system of equations represented by Equation 3 is formulated
and solved[3]. However, with distributed gossip, one can hope
to minimize this cost, make the system and the network
more efficient and expect it to be more reactive. In this
regard distributed gossip techniques have an edge over existing
algorithms.

Although asynchronous distributed gossip protocols have
been well studied, there has been little development in terms
of adapting these protocols to the realm of real world WSNs.
There is also a dire need to have a flexible testing environment
for distributed algorithms which could interface with real
data already available and would enable one to observe the
performance and behavior of the algorithm without the need
for actual field deployment. This paper talks about the design,
development and analysis of an In-Situ Distributed Gos-
sip(INDIGO) framework for sensor networks. The INDIGO
framework caters to the aforementioned needs and enables one
to test the robustness and scalability of algorithms.

The rest of the paper is organized as follows. Section
II talks about the existing state-of-the-art gossip algorithms
which INDIGO implements. Section III presents an overview
of the random and broadcast gossip protocol as implemented
under INDIGO and presents an emperical analysis of the
performance of the framework on the basis of some newly
introduced parameters like sleep time and wait time. Section
IV talks about how we have implemented the aforementioned

algorithms both on system and testbed platforms. Section
V demonstrates the various results we have obtained using
INDIGO and Section VI concludes the study by highlighting
the various aspects of the study as well as pointing at the
future direction of research in this area.

II. RELATED WORK

Distributed Gossip in sensor networks is a well studied
problem. The types of gossip can be broadly categorized into
three types i.e. broadcast, random and geographic [7][8][15].
In this study we limit ourselves to the domain of only broad-
cast and random gossip and describe the various published
works which have inspired this study. As already mentioned
the main aim of this study is to implement established gossip
algorithms on a system level and help in observing their
behavior in different scenarios. Random Gossip was first
proposed by Boyd et al. [7] based on the asynchronous time
model. Random Gossip chooses nodes at random from its
neighbors to exchange information and calculate the average.
The paper proves that the algorithm converges to the consensus
which is the average almost surely. The important thing about
random gossip is that at any time instant there can be only
one exchange taking place between two particular nodes.
This implies that while the process of averaging or gossip is
going on, no other third node can indulge either of the nodes
in gossip. It is only after both the nodes have successfully
performed gossip that they are free to choose other nodes to
perform gossip with at random. The work done by Aysal et al.
discusses the broadcast gossip algorithm [8]. This paper takes
the above work by Boyd et al. a step further and proves that if
the node were to broadcast its values to all its neighbors, then
the algorithm converges in expectation. This paper also uses
the asynchronous time model and uses a similar technique of
a stochastic mixing matrix with a different set of constraints.

Although both random and broadcast gossip aim to achieve
average consensus among nodes, their style of performing
gossip is radically different. While random gossip chooses
to perform gossip with its immediate neighbors, a node can
only perform gossip with only one other particular node at
any given time. Broadcast gossip on the other hand performs
gossip by broadcasting its values to its neighbors. While
random gossip is suited to any type of network with a static
topology, broadcast gossip is more relevant in case of wireless
sensor networks where the underlying communication pattern
is broadcast driven.

The work done by Dimakis et al. [11] presents a broad
overview of the recent developments in the area of gossip
protocols. It describes the convergence rate of gossip protocols
in relation to the number of transmitted messages as well as
energy consumption and also discuss about gossip characteris-
tics over wireless links. Further, the work done by Denantes et
al. [16] presents an interesting evaluation on a mathematical
basis of certain metrics which may be useful in choosing
an apt algorithm for performing distributed gossip. Instead
of focussing on a time-invariant scenarios, these metrics are



evaluated on the basis of time-varying networks culminating
in the provision of an upper bound on the convergence speed.

The work done by Braca et al. [17] investigate an important
and crucial problem of when to begin averaging and when to
end sensing. They propose an alternative novel approach of
running consensus where the sensing and averaging happen in
a simultaneous fashion. The paper [18] provides a very novel
application of gossip protocols. By investigating the problem
of consensus in a multi-agent system, it demonstrates a practi-
cal application of gossip protocols towards a Distributed Flight
Array (DFA). DFA is a set of multiple agents, which co-
ordinate amongst themselves to arrive at a consensus and fly
in a variety of combinations While both the works [8] and [7]
present an astute theoretical analysis of their respective gossip
technique, they make a number of assumptions which may not
hold good in case of a real implementation.

The work done by Tsianos et al. [21] presents a practical
approach for asynchronous gossip protocols but they do not
use a bi-directional mechanism and opt for a one-directional
variant instead and their evaluations are performed on an MPI
cluster which has different constraints from an actual WSN.

A. Motivation and Key Contribution

Therefore, there have been very few attempts at providing
a real implementation framework for a WSN which could
provide unmatched flexibility and ease for evaluation and
testing of various distributed algorithms. It is these aspects
which serve as a motivation for the development and design
of the INDIGO framework which have been expounded in a
systematic way. Firstly, the INDIGO protocol design overview
is given which provides a practical and a near-accurate way
of realizing both random and broadcast gossip protocols on an
actual system setup. We also present an analysis of the effect
certain newly introduced parameters like sleep time and wait
time have on the framework performance and attempt to find
a sweet spot with respect these. Further, the implementation
details are elaborated upon which describe the framework on
a system platform utilizing the standard TCP/IP stack and
on a testbed platform comprising of the BeagleBone Black
coupled with an XBee radio. Lastly, the protocol framework
is evaluated on the basis of various applications and the
performance of the algorithms analyzed.

III. INDIGO PROTOCOL OVERVIEW AND DESIGN

As described in the previous section, gossip protocols can
be broadly categorized into random and broadcast gossip
protocols. In this section is presented a novel and practical
framework design that aims to bring forth the true spirit of
the aforementioned protocols. The idea is to create a flexible
framework design which can be extended into a platform on
the basis of which various novel algorithms can be evaluated
upon.

Let us consider a graph G(V,E), with V,E being the vertex
set and edge set respectively. Since distributed gossip occurs
among neighbors, we denote the neighborhood of any node

i ∈ V as follows,

Ni = {j|j ∈ V,Wij = 1}, (4)

where W is the adjacency matrix of graph G. In the design
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Fig. 1. Illustration of Random and Broadcast gossip with respect to Node i
and its neighborhood jk ∈ Ni,∀k ∈ {1, |Ni|}

of a gossip protocol framework, an important feature of
exclusivity needs to be preserved to reflect the true nature
of the process. Exclusivity implies that a node when in the
process of performing gossip cannot entertain gossip requests
from a third party node, thereby discarding any other packets
until the ongoing gossip exchange succeeds. An important
outcome of exclusivity is that the node which is soliciting
has no way of knowing whether its destination has received
its request or not. In a real setting it is important to take into
account the fact that, packets may get lost and moreover, even
if the packet is received, the destination might be involved in
gossip with some other of its neighbor and may simply discard
this request. If these situations are not handled properly, the
gossip protocol may never terminate or worse it may lead
to contradictory results. In order to solve this problem a
concept of wait time, denoted by σ is introduced. It denotes
the duration of time any node waits before it deems the gossip
exchange to have failed. Wait time insulates nodes from the
phenomenon of waiting forever to hear from their solicited
neighbors and also handles the aspect of packet loss. With the
wait time concept in place, if the packet has not been received
or has been discarded by the receiver, the sender can resume
gossip afresh.

Another important feature that needs to be preserved is
the stochastic nature of the gossip process. There has to
be a degree of randomness associated when a particular
node begins gossip. Failure to maintain this feature would
lead to a deterministic output. Absence of this feature may
also cause deadlock among nodes or cause a heavy rate of
failure of gossip exchanges. To maintain stochastic behavior
a parameter known as maximum sleep time, denoted by ρ has
been introduced which is nothing but an upper bound on the
random interval of time a node sleeps before attempting a
gossip exchange.

We now describe the various terminologies related to both
random and broadcast gossip and proceed to give a detailed
description of the sequence of events in each. Figure 1 pro-
vides the pictorial representation of both random and broadcast
gossip protocols.



• xself : The estimate of a node’s measurement where
xself ∈ Cn×1

• σ: The maximum duration of time after which a gossip
exchange is deemed a failure.

• ρ: The upper bound on the random interval of time a
node sleeps before initiating gossip.

• M: The maximum number of gossip updates to be
performed by all nodes.

• Ni: The neighborhood of node i.
• recv(k, xk): An estimate xk recieved from node k.
• send(k, xself ): A node’s self estimate unicasted to node
k.

• χself = [xj . . . xj+m], matrix of values recieved from m
nodes to be averaged where χ ∈ Cn×m

• broadcast(xself ): A node’s self estimate broadcasted to
all neighbors.

A. Random Gossip

Based on the above features and using aforementioned ter-
minologies we have Algorithm 1 which describes the Random
Gossip protocol encapsulated as a function. In the beginning

Algorithm 1 Random Gossip Algorithm
function RANDOM-GOSSIP (σ, ρ,M, xself )

while updates <M do
sleep for time t, s.t. 0 ≤ t ≤ ρ
if solicited by j ∈ Nself with value xj then

xself =
(xj+xself )

2
send(j, xself )
updates← updates+ 1

else
pick random neighbor j ∈ Nself
send(j, xself ) and start timer for σ
if recv(j, xj)&!timer.expire() then

xself = xj
updates← updates+ 1

end if
end if

end while
return xself
end function

of each batch of gossip each node goes to sleep for a random
interval of time t ≤ ρ. A node wakes up from sleep and
chooses a random peer from its routing table and solicits an
average. It starts a timer for t ≤ σ in order to wait for the
solicited node to respond. If a node is in solicitation mode,
it will discard any other solicitation request by a third party
node. The σ timer expires with the solicited node failing to
respond. In such a case the node again goes to sleep for a
random interval of time t ≤ ρ. The solicited node responds
before timer expires. It updates its current value with the newly
received value and goes to sleep for time t ≤ ρ. A node wakes
up from sleep and finds that there is already a request for
average by one of its peer. In such a case the node performs
the average and sends back the result to the solicitor node.

This process is summarized by Figure 2(b) which summarizes
the sequence of events disscussed in Algorithm 1.

B. Broadcast Gossip

Broadcast gossip varies from random gossip in its demand
for exclusivity. Since broadcast gossip exploits the under-
lying broadcast nature of the network, there is no explicit
requirement for exclusivity. However, in broadcast gossip, a
node still needs to maintain the stochastic nature and for this
purpose the concept of maximum sleep time is maintained.
Also, in broadcast gossip, a node is expected to wait for
receiving values from its neighbors. During this process, there
should be a way to determine when to stop accepting the
values and perform the average. This can be done in two
ways, either wait for a fixed number of neighbors to respond
and then do the average or wait for a fixed amount of time
and do the average with whatever values have been received
until then. Logically, the latter is a better way due to many
reasons. Firstly, this technique does not depend on the node
degree. Secondly, it does not go into an indefinite wait on
not receiving anything from a fixed set of neighbors. Lastly,
it preserves the stochastic and asynchronous nature of the
algorithm. Therefore, we incorporate the concept of wait time
to mark the cut-off time for performing the average. While
the average is being computed any received requests will be
dropped. Based on the above features Algorithm 2 presents the
algorithm for the broadcast gossip protocol encapsulated as a
function. In Broadcast Gossip too each node goes to sleep

Algorithm 2 Broadcast Gossip Algorithm
function BROADCAST-GOSSIP (σ, ρ,M, xself )

while updates <M do
broadcast(xself )
sleep for time t, s.t. 0 ≤ t ≤ ρ
χ← null
no of msgs← 0
start timer for σ
while !timer.expire() do

recv(j, xj),∃j ∈ Nself
χ[no of msgs] = xj
no of msgs← no of msgs+ 1

end while
xself =

(
∑no of msgs

i=1 χ[i])+xself

no of msgs+1
updates← updates+ 1

end while
return xself
end function

for a random interval of time t ≤ ρ. A node that has just
woken up from sleep and broadcasts its value to neighbors. It
then waits for interval of time t ≤ σ. It performs the average
with whatever values have been received in the interim period
and again goes to sleep for random interval of time t ≤ σ.
Figure 2(a) summarizes the sequence of events disscussed in
Algorithm 2. We will now turn our attention to the effects ρ
and σ have on the gossip performance.



BROADCAST-GOSSIP(�, ⇢, M, xself )

•      start timer for � and while timer 
active

• receive xj,  9j 2 Nself  
• �[no of msgs] = xj

• no of msgs + +

• after timer expires

• xself =
(
Pno of msgs

i=1 �[i]) + xself

no of msgs + 1

• increment updates

broadcast(xself )

� = null, no of messages = 0

if updates M
• sleep for time t, s.t 0  t  ⇢

else
• return xself

(a) Broadcast Gossip

RANDOM-GOSSIP(�, ⇢, M, xself)

AVERAGE SOLICITED BY SELF

NEIGHBOR SOLICITS AVERAGE

if updates M
• sleep for time t, s.t 0≤ t ≤⇢

else
• return xself

• solicited by j 2 Nself with value xj

• xself =
(xj + xself )

2

• pick random neighbor j 2 Nself

• send xself  to j, start timer for �

• send xself  to j,
• increment updates

• if j sends back average before timer expires
• xself = xj

• increment updates

(b) Random Gossip

Fig. 2. Flow Diagram depicting Broadcast and Random Gossip algorithm

C. Sweet Spot Analysis

It is of primary interest to determine whether these param-
eters have any bearing on the success of a gossip exchange.
Moreover, it is also of importance to find out whether there
exists a Sweet Spot, i.e a range of values of ρ and σ value
which could yield a near optimal probability of success. To
accomplish this, numerous experiments were conducted with
0 ≤ ρ ≤ 10 on a 3×3 simulation setup configured for random
gossip. We varied the value of σ with respect to ρ and plotted
the average probability of success of each gossip exchange.
The result is presented in Figure 3 Figure 3 depicts the ps, the
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Fig. 3. Sweet Spot Analysis

probability of success on the y-axis and the ρ values on the x-
axis respectively. The probability of success ps is determined
by the relation,

ps =

n∑

i=1

Nsi
Nti

(5)

where Nsi is the total number of successful gossip attempts
and Nti is the total number of attempts obtained on the ith

node. Each curve in Figure 3 represents a particular relation
between ρ and σ. With σ being the dependent variable and ρ
being the independent variable, we collect values for a variety
of combinations of ρ and σ. From the figure, it can be observed
that there indeed exists a sweet spot for the set of relations ρ =
kσ where 0 ≤ k ≤ 1 while for the relation ρ = 2σ, the value
of ps turns out to be sub optimal.Although this experiment is in
no way exhaustive and further trends may emerge on detailed
analysis with other values of ρ, σ, we can draw a number
of inferences from this figure. Firstly, the trends follow the
intuitive notion that if the maximum time a node can sleep
is less than the maximum time it is ready to wait then the
probability of success increases and vice versa. Secondly, with
further reduction in the ratio ρ : σ, there appears to be a
saturation point and further decrease will not yield greater
improvement. Lastly, for this network setup, the region around
ρ ≥ 6 seems to be a favorable position because in all relations,
there is a noticeable improvement of performance. From this
analysis it becomes quite clear that ρ, σ do have an effect on
the probability of success of gossip exchanges and there does
exist a sweet spot for these values.

In the following sections, we discuss the implementation
details and a testbed setup description of INDIGO before
proceeding forward to analyze the results in the form of
various case studies.

IV. SYSTEM IMPLEMENTATION AND TESTBED DESIGN

In this section, we describe in greater detail, the technical
aspects of two evaluation platforms, i.e. a system platform and
a testbed platform. System platform is intended to provide
a generic evaluation platform using the standard TCP/IP
stack based wireless mesh network. Although for evaluation
purposes, such a robust system platform should be sufficient,
we also require a testbed platform to emulate on-field envi-
ronments using the very same hardware which would be used



for deployment. Hence we propose and eventually describe
a testbed platform as well comprising of BeagleBone Black
coupled with an XBee radios. Since the testbed platform is
an indoor setup, the nodes form a network which resembles a
complete graph due to close radio proximity. A unique feature
of INDIGO is its platform agnostic way of functioning which
provides a flexible, rich and diverse testing environment. We
draw a comparison between the two before proceeding towards
evaluation with the help of case studies. Figure IV-A depicts a
schematic comparing the design of the testbed and the system
platforms.

A. System Design

We utilize a mesh network model for implementing IN-
DIGO. Mesh networks are those in which each node not
only communicates with its peers but also serves as a relay
point by facilitating the transfer of messages between two
different nodes. Since maintaining proper end-to-end connec-
tivity in a mesh network is a costly affair due to low link
reliability, we employ a mechanism known as the Bundle
Layer which is a delay tolerant technique of transmission.
The key objective behind the Bundle Layer is to improve
reliable transmission over wireless media over the TCP/IP
stack. To accomplish this the Bundle Layer breaks down the
notion of end-to-end among the various hops in between which
would significantly reduce retransmission of packets. Under
the Bundle Layer lies the actual transport layer which uses
normal TCP and beneath which runs a distance vector routing
protocol known as BATMAN (Better Approach to Mobile Ad-
hoc Networking)[2]. The advantage of BATMAN lies in the
fact that routing overhead is minimized by maintaining only
the next hop neighbor entry to forward messages to instead
of maintaining the full route to the destination. The Bundle
Layer along with BATMAN ensure reliable transmission of
messages between source and destination.

B. Testbed Design

Our testbed setup comprises of the BeagleBone Black(BBB)
interfaced with the XBee radio. The BBB is an inexpensive
small palm sized computer which runs the Angstrom operating
system which is a flavor of embedded linux. The BBB has a
memory of 512 MB and has a single core CPU with clock
rate of 1GHz. For radio communication we use the XBee PRO
S3B 900 MHz version which is mesh network capable. The
module comes with an onboard flash memory of 512 bytes and
has a Freescale MC9S08QE32 microcontroller which allows
for programmable control. Various network functionality have
been abstracted by XBee including routing and mesh network
capability. The programmable control allows us to operate
the XBee in a variety of modes which makes it application
flexible. Among the most important features, we could set
the Power Level(PL) parameter which indicates the amount
of power consumed during transmission. During run time, we
can issue commands encapsulated in a pre-decided frame and
pass it on to the device and expect to get encapsulated replies.
Through programmable control one can even choose from a
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Fig. 4. System design and Testbed design : A comparison

(a) Blowup of the BBB-XBee Node

(b) Interfacing of BBB with XBee

Fig. 5. Actual Testbed Node setup involving BBB and XBee

variety of sleep patterns already offered by the device. This
greatly simplifies the process of deployment by having a robust
network maintenance framework. Figure 5(a) presents a blow
up of the different components which go into making one
node on our testbed platform, while Figure 5(b) shows how
the various hardware components fit together. For interfacing
the BBB with the XBee it is configured as a peripheral UART
(Universal Asynchronous Receiver Transmitter). Using the
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device tree overlay we are able to bring up a serial port for
communication with the XBee. This serial port is memory
mapped to the on board memory of the underlying XBee.
Once this configuration is in place, we can communicate
with the XBee and its peers through this serial port. For
accomplishing this we have developed a host of XBee specific
functions for sending and recieving information. The hallmark
of these functions is that they allow for a flexible operation of
the XBee with varying message types and message lengths.
Figure 6 provides an overview of the XBee message structure
for conducting distributed gossip. Another interesting point to
note is that through a configuration of the serial port through
the POSIX compliant serial port libraries in Linux, we can
man this serial port with the effect of achieving simultaneous
receiving and transmitting of data.

V. CASE STUDIES

This section focusses on the application based evaluation of
INDIGO. We focus on two forms of evaluations.

• TYPE 1: Distributed consensus gathering of the form.

x̄ =
1

n

n∑

i=1

xi (6)

• TYPE 2: Distributed consensus optimization of the form.

minimize F (x) =
1

n

n∑

i=1

fi(xi)

subject to xi ∈ χi
(7)

We start with the simple case of distributed consensus gath-
ering which is of TYPE 1 in both the system as well as
the testbed platform. Then we move to more complex cases
like distributed event location on the testbed and finally to
distributed tomography computation on a simulation setup
which are problems of TYPE 2. For the system evaluation
platform we employ a network emulator named CORE [1].
CORE creates virtual Network Interface Cards (NICs) for a
specific network on a single host machine allowing emulation
of actual network settings. The advantage of CORE is that
traditional Unix like environment can be obtained on each of
the nodes in the network which makes porting code to actual
physical devices from the virtual nodes straightforward. For
the testbed evaluation platform, we use the testbed consisting

of 6 BBBs each connected to an XBee. The BBBs are
connected to an Ethernet switch which is in turn connected to
a host machine. While the distributed gossip occurs amongst
the BBBs using the XBee radio, the Ethernet interface helps
maintain control of the gossip process with a rich set of scripts
via the host machine.

A. Simple Consensual Average

Distributed gossip protocols are evaluated [19] on the basis
of their ability to converge to consensus based on two different
types of initializations of data.

• Slope initialization: All nodes in the network are initial-
ized with a scalar value x = k ∗ nodeId, where k is
constant for all the nodes. The resultant set of values
form a slope on a network of nodes. It is expected that
on termination of the gossip protocol, the slope will have
given way to a flat surface tending to average of the initial
set.

• Spike Initialization: All but one of the nodes is initialized
to a very high scalar value and the rest are set to 0. With
this initialization it is expected that all the nodes will have
the average of the spike value on termination.

1) Slope Initialization: Figure 7 depicts the gossip trends
arising out of slope initialization on the testbed platform and
the system platform. This experiment was performed on the
testbed platform mentioned in Section IV using 6 Beaglebone
Blacks and XBees with ρ = 3 and σ = 3 and on system
emulation platform using the same values. As can be seen
from the figure, the gossip yields very good results, with the
protocol converging to a consensus which falls under a very
close margin of the actual average.

2) Spike Initialization: Figure 8 depicts the gossip trends
using a spike initialization. While the random gossip scheme
performs well and converges to consensus within a close mar-
gin of average, the broadcast gossip converges to a consensus
but isn’t close to the actual average. This is expected behavior
as it has been anticipated in [8] that broadcast gossip only
converges to average consensus in expectation.

B. Distributed Event Location

Distributed Event Location is a process of localizing a
seismic event. This is done through a process known as
Geigers method [9] wherein a system of equations of the form
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(c) Broadcast Gossip Slope Intializa-
tion on System Emulation
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Fig. 7. Results of Slope Initialization
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Fig. 8. Results of Spike Initialization

represesented in Equation 7 is solved. Therefore, distributed
event location falls under TYPE 2. We can solve these system
of equations using any least squares technique like Bayesian
ART [20]. The whole idea behind this experiment is to make
the process of Event Location as mentioned in [9] distributed.
For performing this experiment we used the system testbed
which comprised of 6 Beaglebone Blacks communicating
with each other using the XBee radio. Figure 9 represents
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Fig. 9. System testbed results of Distributed Event location using random
and broadcast gossip

an experiment involving random and broadcast gossip while
performing distributed event location for one particular event
where the y-axis represents the relative error η

ηi =
||xi − x∗||
||x∗|| , (8)

where i is the iteration number and x∗ is the ground truth.
Figure 10 shows the number of packets lost while performing
distributed event location among the different nodes. As a
result, each node solves its local system of equations referred
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Fig. 10. Packet Loss of Random and Broadcast Gossip while performing
Distributed Event Location with 100 iterations

to by Equation 7 by using an initial guess. Next, it generates
the new x value and performs gossip with some other of its
neighbor node. After the completion of this gossip exchange,
it uses the obtained x value as basis to again generate a
new estimate of x and the process continues till a given
tolerance is reached or the maximum number of iterations
are reached. This technique embodies a true asynchronous
gossip approach as the objective function being solved is
directly coupled with exactly one gossip update. With this
result, it becomes apparent that distributed event location can
be fruitfully applied to INDIGO.

C. Distributed Seismic Tomography

Another application of INDIGO is to perform distributed
seismic tomography [26] which is a TYPE 2 problem and can



be modelled as a distributed consensus optimization problem.
Centralized seismic tomography involves solving an objective
function of the type,

minimize ||x||
subject to Ax = b

(9)

where x ∈ Cn, A ∈ Cm×n, b ∈ Cm and i ∈ {0, n}.
In distributed seismic tomography, kth node has its own
bk and Ak and an initial xkinit which it uses to solve a
local optimization problem (LOP). referred to by Equation 9.
However, in the distributed scenario, the kth node performs
a gossip update with its neighbor(s) to obtain a new estimate
of its value xk. This value is inturn used to solve the local
optimization problem and the process repeats till a threshold
is reached. In other words, the distributed gossip and the LOP
are tightly coupled leading to true asynchronous behaviour.

To execute this problem on INDIGO, we used a synthetic
data model. Our resolution was 16 × 16, which meant that
our x matrix was of size 256. Our setup was simulated on a
network comprising of 49 nodes, arranged in a grid topology.
The key idea being that a node initially generates an estimate
of vector x using Bayesian ART to solve the LOP. It performs
performs gossip with neighbor(s) and obtains a new value of
x. This value is then used as a basis for computing the next
estimate of x and the process repeats.

We evaluate our results based on two parameters, η being
the relative residual and β being the relative error with respect
to the ground truth. For the ground truth, we use the least
square solution of the centralized form of Ax = b, denoted by
xgt

ηi =
||Axi − b||
||b|| (10)

βi =
||xi − xgt||
||xgt|| (11)

Figure 11 depicts the error bar of the relative residual value η
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Fig. 11. Distributed Seismic Tomography relative residual(η)

for both the random and broadcast gossip experiments each of
which have performed 100 successful gossip updates. Figure
12 depicts the error bar of the relative error value β for both
types of gossip, comprising of 10 successful gossip updates.
From both figures it is apparent that distributed seismic tomog-
raphy on INDIGO yields very good and clear results which are
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Fig. 13. Distributed Seismic Tomography Communication Cost

expected. Lastly we examine the communication cost, depicted
in Figure 13. While random gossip exhibits a relatively uneven
surface in Figure , broadcast gossip has a highly consistent
communication cost among nodes as depicted in 13(b). This
fact can be attributed to the relatively higher stochastic nature
of random gossip as compared to broadcast gossip.

From the above discussions on the various applications



and investigations into the behavior of gossip protocols in
each, it becomes apparent that INDIGO is indeed a versatile
framework capable of providing an evaluation platform for a
myriad of algorithms and problems.

VI. CONCLUSION

This work focusses on the design, development and eval-
uation of INDIGO, a distributed gossip protocol design for
sensor networks. Drawing from the strong theoretical analysis
and study found in existing literature, this work attempts to
design a practical and highly useful gossip protocol frame-
work. It enumerates certain presumptions which are made by
existing theoretical works in their analysis and which may
not necessarily hold good for practical implementations. In
order to address these issues, we introduce parameters like
wait time and sleep time which serve as a practical way of
realizing the true nature of asynchronous gossip protocols. We
further go on to analyze the effect of these parameters on the
performance of INDIGO and endeavor to find of sweet spot
with respect to these.

INDIGO further provides a versatile design for performing
distributed consensus and consensus optimization. With the
help of gossip protocols which have been implemented on
a generic system platform as well as on a testbed plat-
form, we ensure seamless portability of algorithms. Further,
INDIGO is evaluated on the basis of various case studies,
where its efficacy is demonstrated. Mainly, three different
case studies are evaluated. Firstly, INDIGO’s performance on
simple distributed consensus is demonstrated to yield expected
results. Next, INDIGO is applied to the problem of distributed
event location. Lastly, we apply INDIGO to the domain of
distributed seismic tomography, where we get good results as
well.

This paper demonstrates that INDIGO is indeed an efficient
and robust gossip framework and can be applied practically
to any scenario which warrants asynchronous distributed con-
sensus or distributed consensus optimization and get reliable
results.
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