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Abstract—Many real-world wireless sensor network appli-
cations such as environmental monitoring, structural health
monitoring, and smart grid can be formulated as a least-
squares problem. In distributed Cyber-Physical System (CPS),
each sensor node observes partial phenomena due to spatial and
temporal restriction and is able to form only partial rows of least-
squares. Traditionally, these partial measurements were gathered
at a centralized location. However, with the increase in sensors
and their measurements, aggregation is becoming challenging
and infeasible. In this paper, we propose distributed randomized
kaczmarz that performs in-network computation to solve least-
squares over the network by avoiding costly communication. As
a case study, we present a volcano monitoring application on
a distributed CORE emulator and use real data from Mt. St.
Helens to evaluate our proposed method.
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I. INTRODUCTION

Advancement in wireless sensor network (WSN) technol-
ogy has enabled us to deploy large number of small, low cost
sensors that can sense, actuate and communicate information in
various fields such as environmental monitoring [22], structural
health monitoring [17] and smart grids [19]. These real-world
applications involve parameter estimation and can be formu-
lated as a least-squares problem. In distributed Cyber-Physical
System (CPS), each sensor node observes partial phenomena
due to spatial and temporal restriction and is able to form
only partial rows of least-squares Eq. (1). Traditionally, these
partial measurements were gathered at a centralized location,
however, with the increase in sensors and their measurements,
aggregation is becoming challenging and in some cases in-
feasible. For instance in volcano monitoring, a dense network
of stations are used to record seismic vibrations and obtain
high-resolution images of volcano conduit [15]. However, data
recorded by these stations are being manually gathered due
to its high fidelity and bandwidth limitations [28]. In other
CPS such as smart grid, sharing of sensor measurements
are restricted due to privacy and security concerns. These
constraints demand distributed algorithms that can run on a
loosely coupled system such as WSN.

Sensors attached to a CPS are now capable of sampling
high volume, large dimensional data in real time. Tiny but
powerful computational units (e.g. Beaglebone Black, Ar-
duino) can now perform few pre-processing steps such as
cleaning of raw data or discretization of continuous events. For
instance, in volcano monitoring system, a seismic vibration

sensor (geophone) sample in a range of 16-24 bit at 50-
200 Hz generating a high volume of raw data [28]. Pre-
processing steps such as detecting an earthquake, finding its
origin time and location can be performed in-situ [20]. Using
these pre-processing steps, discretization of raw data leads us
to the formation of a partial least squares problem at each
node [26]. The dimension of such problems is typically in the
range of hundreds of thousands of equations and unknowns.
Interestingly, in case of volcano monitoring with the increase
in the earthquakes, the partial least squares problem increases
its row size, making the system bigger.

Mathematically, these problems can be modeled as a linear
least squares problem and in this paper, we consider solving,

xLS = argmin
x

1

2
‖Ax− b‖22 (1)

for x ∈ Rn in a distributed way, where A ∈ Rm×n and b ∈
Rm. In particular, we assume that A and b are distributed row-
wise over the P nodes of a network, i.e A = {A1, · · · , AP }
and b = {b1, · · · , bP }, where Ai ∈ Rmi×n, bi ∈ Rmi form
a subsystem at the ith node. These subsystems are assumed
to be huge and therefore, we are interested in solving a
large scale problem over a loosely connected, decentralized
network (WSN), where each node holds part of the input data.
For such large sparse system of equations, iterative methods,
especially randomized methods are becoming popular due to
its simplicity and performance.

Recently, methods like stochastic gradient descent (SGD),
randomized coordinate descent (RCD) have received renewed
attention for confronting very large scale problems, especially
in the context of machine learning (ML) [3]. These methods
are based on the computation of partial gradients involving
random sampling of a subset of the entire system and have
been proven to be better for noisy data due to random sam-
pling. Randomized Kaczmarz (RK) is a type of SGD which has
been recently popular for its exponential convergence rate with
appropriate choice of rows for projection [30]. RK processes
single row at a time and requires only O(n) storage. For a
extremely large sparse system of linear equations, RK is even
more efficient than the conjugate gradient method [30].

In this paper, we first propose a parallel randomized
kaczmarz (Par-RK) approach that uses fusion center to merge
intermediate partial least square solution x. We extend this
algorithm by eliminating fusion center to make it distributed
randomized kaczmarz (D-RK) which limits the communication
only to the immediate neighbor. In this paper, we use the term



parallel for algorithms developed primarily using a central
coordinator or a fusion center, whereas distributed implies
algorithms in which communication in each node is limited
to its immediate neighbor without using any multi-hop com-
munication. In this paper, we provide theoretical convergence
of these algorithms and apply this algorithm to a real world
problem of volcano monitoring. We evaluate its performance
using synthetic and real data traces implemented on the CORE
network emulator [1].

The rest of the paper is organized as follows. Section II
presents related work on iterative methods to solve least
squares on sensor networks. Section III describes the pro-
posed algorithms and its convergence result. In Section IV,
we present seismic tomography on sensor network as an
application case study and evaluate the performance of our
proposed methods. In Section V we carry our experiments
using real seismic data traces from Mt. St. Helens, WA, USA.
Discussion and future work is presented in Section VI. We
conclude the paper in Section VII.

II. RELATED WORK

Parallel least squares solvers for sensor network are re-
stricted to only those that collect only partial solution x
from all the nodes and perform low complexity calculation
(merging) and broadcasts them. Methods that involve trans-
ferring large data set from all the nodes are not discussed
here as it is not possible in few decentralized application
involving big data. The distributed multi-splitting is one of the
popular methods that requires fusion center and was originally
proposed by Renaut [25]. This method partitions the system
into columns instead of rows, letting each processor apply
a well-known fixed point iteration methods such as Jacobi,
Gauss-Seidel and successive over-relaxation to the normal
equation. Since it is a column splitting method, we will not be
considering it in this paper.

In order to handle large scale data, many block parallel
iterative methods suitable for parallel computing have been
developed recently [7]. Among them Component Averaging
(CAV) [6] and Diagonally-Relaxed Orthogonal Projection
(DROP) [5] methods can be used on sensor networks [15]
using fusion center. CAV [6] is a Cimmino-type method that
projects current iterates simultaneously onto all the systems’
hyperplanes. In this method, they adopt diagonal weight-
ing of the linear equation based on its sparsity rather than
fixed weights used in Cimmino, exhibiting faster numerical
convergence. CAV retains the desired convergence properties
of the Cimmino’s method, in the sense that it converges
in the inconsistent case. Par-RK, which uses fusion center,
differs from these methods as it uses randomized kaczmarz to
accelerate the convergence [30].

Truly distributed least squares solver proposed by Zhou
et al. [33] is robust against node failures. The algorithm is
designed for a single variable case, and higher dimension is not
considered. Recently, distributed gradient descent algorithms
are being developed to solve Eq. (1) [12]. These methods are
designed to be truly distributed and avoid data fusion center
or long-distance communication, offering better load balance
to the network. These methods use a diminishing step size
to ensure convergence and sometimes are very sensitive to

the choice of step-size. In this paper, we compare D-RK,
with popular distributed gradient descent methods such as
EXTRA [27] and DGD [32].

Authors in [24] have studied a distributed least squares
solver based on distributed QR factorization. This least square
solver first computes the local solution using distributed QR,
which in turn uses gossip-based distributed modified Gram-
Schmidt method described in [29]. This method uses dis-
tributed matrix-vector multiplication that can be expensive for
a large sparse matrix. The existing push-sum methods to solve
least squares problem are designed using the direct approach
as opposed to iterative methods. To our best knowledge of
literature, our work is the first attempt to use push sum based
methods with randomized kaczmarz to solve least squares
problem in wireless sensor network.

III. ALGORITHM DESIGN

In this section, we use G(V, E) to denote undirected
connected graph with node (sensor) set V = {1, · · · , P} and
edge set E , where each edge {i, j} ∈ E is unordered pair of
distinct node. Node i carries out communication only with its
neighbors Ni = (j|{i, j}) ∈ E . Let x ∈ Rn be column vector
and xk(i) be the partial solution obtained at node i after kth

iteration for every i ∈ V . Also, let xj denote the jth component
of x. From Eq. (1) let F (x) = 1

2‖Ax−b‖
2
2 and according to the

gradient descent method the optimal solution x∗ is obtained by
traversing towards −∇F (xk) at every iteration k = {1, 2, · · · }
by certain step size ρk starting from initial value x0. In other
words, (k+1)th iteration is given by, xk+1 = xk−ρk∇F (xk).

Decentralized version of this problem recently developed
by [12], [27], aims to minimize each nodes objective objective
function Fi(x) independent of other nodes. At every kth

iteration ∇Fi(xk) requires the computation of ATi (Aix
k−bi).

Matrix multiplication becomes an issue for a large data set
especially on a sensor with a very limited memory footprint.
To avoid this, we use only partial gradients that involve
sparse vector multiplication such as stochastic gradient descent
(SGD). Recently, methods like SGD are becoming popular in
ML communities, and it involves random sampling to compute
the gradient of a subsystem instead of an entire system. This
method has been proven to be better for noisy data due to
random sampling.

Randomized Kacmarz (RK) is a type of SGD commonly
used to compute Eq. (1). This method starts with an arbitrary
initial vector x0 and at every iteration k, it randomly selects a
row i(k) ∈ {1, · · · .m} of the linear system (with probability
of choosing row i is ‖ai‖

2
2

‖A‖2F
, where ‖‖F denotes the frobenius

norm). Next, it performs an orthogonal projection of the
current estimate vector onto the hyperplane aTi(j)xi = bi(j) as
shown in Algorithm 1.

Algorithm 1 Randomized Kaczmarz Algorithm
1: for k ← 0 until convergence or max iteration do
2: Pick i(k) ∈ {1, · · · .m} with probability pi = ‖ai‖

2
2

‖A‖2
F

3: x(k+1) = x(k) + ρi(k)

bi(k)
−〈ai(k)

,x(k)〉

‖ai(k)
‖2 ai(k)

4: end



Recently, Strohmer and Vershynin [30] proved the follow-
ing exponential bound on the expected rate of convergence
of RK given by, E‖xk − x‖22 ≤ (1 − 1

R )
k‖x0 − x‖22 where

R = ‖A−1‖2‖A‖2F , x0 is an arbitrary initial value, while E
denotes the expectation (over the choice of rows). Needell [23]
studied the convergence of RK for the inconsistent system.
RK and it’s variants are inherently sequential and assume the
availability of entire matrix A and vector b at a central location.
This method cannot be directly applied to a loosely coupled
system such as WSN and for this reason we first develop a
parallel version of RK using fusion center.

Now, for V = {1, · · · , P} number of nodes deployed for
monitoring, each node receives some partial row information
of A, b i.e,

Ax = b (2)

where,

A =


A1

A2

...
AP

 ; =


b1
b2
...
bP

 ;Ai ∈ Rmi×n; bi ∈ Rmi

where, x ∈ Rn is the unknown vector. We assume that,
{Ai, bi} forms subsystem in each sensor node. This subsystem
has non-zero columns and such a column if exists can be
removed as a preliminary step as it corresponds to coefficient
of fictitious variable, whose values can be arbitrary. Also,
‖aj‖2 > 0 i.e jth row 1 ≤ j ≤ mi of Ai is non-zero.

From the above formulation, each node has only a partial
information of the whole equation. Therefore, Par-RK starts
with some arbitrary initial guess and performs three main steps
until convergence. Step 1: Perform RK at each node i ∈ V in
parallel for fixed ki > 0 iterations. Step 2: Shared component
of unknown variable x(i) between different nodes are merged
by taking a component-wise average at a fusion center. Step 3:
The merged vector is used as a new estimate for next iteration.
This approach can be formalized as follows.

For each 1 ≤ j ≤ n, denoted by Ij the index set of blocks
which contain an equation with a non-zero coefficient of xj
(Ij = {1 ≤ q ≤ P |xj} has a non-zero coefficient) in some
equation At, bt. Let sj = |Ij | and denotes s =

∑n
j=1 sj . Next,

we provide the definition for merge operation.

Definition 1: Let A = {A1, A2, · · · , AP } and b =
{b1, b2, · · · , bP } be partitioned into P blocks. The component
average relative to {A, b} is mapping CAA,b : (Rn)P →
(Rn), defined as follows: let {x1, · · · , xP } ∈ Rn. Then
CAA,b(x

1, · · · , xP ) is the point in Rn whose jth component
is given by CAA,b(x1, · · · , xP )j = 1

Sj

∑P
`=1 x

`
j , where x`j is

the jth component of x`, for 1 ≤ ` ≤ P .

Given {Ai, bi}, relaxation parameter ρi for i ∈ {1, · · · , P}
and from the Definition (1) Par-RK Algorithm 2 is as follows.
Step 6 of the Algorithm 2 is a merging operation and is carried
out in a fusion center. After every local iteration at each node,
partial solution y` from all the nodes are sent to a fusion
center using data aggregation scheme. At a fusion center, these
partial solutions are merged according to the Definition (1).

Algorithm 2 Par-RK Algorithm
1: set x0 ∈ Rn to an arbitrary value.
2: for k ← 0 until convergence or max iteration do
3: for each 1 ≤ ` ≤ P in parallel do
4: y` =RK(A`, b`, xk, ρ`)
5: end
6: x(k+1) = CAA,b(y

1, · · · , yP )
7: end

The merged solution is again disseminated to the network, and
all the nodes use this as the initial value to carry out further
iterations.

A. Convergence Analysis

To prove the convergence of Par-RK we first transform
the system given in Eq. (2) into system of equations in some
superspace Rs of Rn. Let Bt = {At, bt}, be a tuple containing
known terms of subsystem and xt ∈ Rn be the partial solution
of subsystem t for 1 ≤ t ≤ P . We know that, xt can share
some common variable with xt′ if At and At′ has common
non-zero column. Now without loss of generality, for 1 ≤ r ≤
n the components {x1, · · · , xr} be exactly share with two or
more nodes i.e s1, · · · , sr ≥ 2, while sr+1, · · · , sn = 1. From
this we have n− r components of x not shared by any blocks
and can be computed without needing any data exchange.

Now, from the Definition (1) we have an expansion map-
ping E : Rn → Rs:

E(x1, · · · , xn) =
(y1,1, · · · , y1,s1 , · · · , yr,1, · · · , yr,sr , yr+1, · · · , yn),

(3)

where yj,1 = · · · = yj,sj = xj for 1 ≤ j ≤ r and yj = xj
for r < j ≤ n.

Similarly, we can transform the equation of the subsystem
Bt from Rn to Rs which we will denote it as B′t = {A′t, b′t}.
The new transformed equation in B′t do not share any common
variable with any other blocks. Let, B′ = ∪Pt=1B

′
t represent all

the subsystem stacked together. Now, parallel execution RK on
each node Bt for 1 ≤ t ≤ P is equivalent to performing RK
on B′. Next, we will show that averaging the shared variable
of the system B, is equivalent to certain row projections. From
this it follows that Par-RK is just RK in Rs.

Lemma 1: Let 1 ≤ m ≤ P , y0 = (y01 , · · · , y0P ) ∈ (R)P
and let y1 = (y11 , · · · , y1P ) ∈ (R)P be defined as follows:
y1i = (y01 + · · · + y0m)/m for 1 ≤ i ≤ m, and y1i = y0i for
m < i ≤ P . Then y1 can be obtained from y0 by performing
a sequence of (m− 1) orthogonal projections on hyperplanes
of Rn as in KACZ.

Proof: (refer Appendix A)

We have shown that averaging is equivalent to row pro-
jection in some superspace Rs. Let, B̃′ be the auxiliary
averaging equation and we form B′′ by adding B′ with B̃′,
with increased row proportional to number of shared variables.
Now, if the Eq. (2) is consistent, then set of transformed
equations B′ and average equations B̃′ are also consistent.
Strohmer and Vershynin [30] showed that RK converges on a
consistent system even if the projections are not performed
cyclically; all that is required is that each equation should



be used infinitely often. This allows us to perform RK in
Algorithm 2 for any positive number of iteration in each block.
We refer to work of [23] in case of the inconsistent system.
This proves the convergence of Par-RK.

B. Communication Cost and Performance

The communication cost of Par-RK is of the order 2kPn
where k, P, n represents iteration, number of nodes and size
of ~x respectively. Although the communication cost is in
terms of iteration, Par-RK involves aggregation and requires a
fusion center to perform merging. These fusion center based
method can be effective in applications that require coordinator
node and has relatively smaller data size. The data collection
and dissemination on a large scale network for each iteration
can become challenging especially in a harsh environment.
This method also requires synchronization between all the
nodes for aggregation and is vulnerable to failure especially
at the fusion center (Fig. 1(a)). From the evaluation, we saw
that the performance of Par-RK decreases with increase in
the number of nodes (Fig. 1(b)). The multihop communica-
tion increases the communication overhead, packet loss, and
slower convergence. These practical limitations motivated us
to develop another class of algorithm to solve Eq. (2) that
exchanged information only with the neighbors decreasing the
communication overhead (Fig 2). In the next sub-section, we
will provide some overview of gossip method that will setup
the background for the distributed randomized kaczmarz (D-
RK).
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Fig. 1. Parallel RK Communication and Performance

C. Distributed Randomized Kaczmarz

Gossip methods are emerging as a new communication
paradigm for large-scale distributed systems [16]. Some of the
features that makes gossip methods attractive are: i) absence of
central entity or coordinator node ii) high fault tolerance and
robustness iii) self healing or error recovery mechanism [31]
iv) efficient message exchange due to only neighbor commu-
nication v) provision for asynchronous communication. These
interesting characteristics make them suitable for WSN to carry
out decentralized computation [29].

There are several variants of gossip algorithms designed
specifically for tasks such as i) disseminate information [8],
ii) compute sum/average [16] and iii) reach consensus [2].
The design of these algorithms vary slightly based on the
communication pattern and also with the type of information
exchanged at each iteration. Fore.g., in push-sum [16], only
one node wakes up at a time and exchanges information with

Fig. 2. Gossip based Push Sum method where information is exchanged
between neighbor without fusion center.

another neighboring node whereas, in broadcast gossip [2]
information is sent to all its neighboring node.

To design truly distributed method, we avoid the fusion
center to compute average and replace it with decentralized
methods such as push-sum [16]. In push-sum, when node i
activates at tth time slot, the following set of events occur: i)
Node i sends its current state value xti to neighboring node
j. ii) Node j receives xti and updates it in following way:
xt+1
j =

xt
j

2 +
xt
i

2 . iii) Node j sends xt+1
j to i, where it updates

xt+1
i = xt+1

j . iv) Remaining nodes update their value as:
xt+1
` = xt`,∀` ∈ {V − {i, j}}.

Now, if we denote xt ∈ RP a vector whose each compo-
nent represents state of each node in network, then for every
clock tick t we have, xt+1 = W txt, where, W t is a random
matrix given by,

W t
ij =


1
P {i, j} ∈ E
1− |Ni|

P i = j
0 otherwise

From the above weights, W t exhibits following property:
W t1 = 1 and 1TW t = 1T . Therefore, for every t, the iteration
preserves the sums while vector of averages must be fixed
point of iteration [4]. Next, we use the above gossip model
and extend it to component-wise vector sum which will be
used for computation of decentralized average.

Let xk(i) denote intermediate solution of Ai, bi at ith node
after kth iteration. Also, let xk(i)j denote jth component of
xk(i). We define Xt

j = (xk(1)j , · · · , x
k
(P )j)

T , containing the jth

component of all the nodes. From the above gossip model
we update the jth component by Xt+1

j = W tXt
j . Similarly,

we can extend this to all the component j ∈ {1, · · · , n}. We
denote this gossip scheme as push-vector.

Using the above definition of push-vector we propose the
distributed randomized kaczmarz (D-RK) to solve linear equa-
tion over a decentralized system such as WSN. Algorithm 3
describes D-RK that combines component-wise gossip average
with RK to solve a linear system of equations. In step 1 - 6
algorithm performs a certain iteration of RK simultaneously
on all the nodes using its initial vector xk. Step 7 - 10 of



Algorithm 3 D-RK Algorithm
1: set x0` ∈ Rn to an arbitrary value ∀` ∈ V .
2: for k ← 0 until convergence or max iteration do
3: for each 1 ≤ l ≤ P in parallel do
4: y` = RK(A`, b`, xk` , ρ`)
5: ỹ0(`) ← y`
6: end
7: for t← 0 until convergence or max iteration do
8: Node i ∈ V contacts j ∈ Ni and updates

9: ỹt+1
(j) = ỹt+1

(i) =
ỹt(j)
2

+
ỹt(i)
2

10: end
11: x

(k+1)

(`) = ỹt(`) 1 ≤ l ≤ P
12: end

the algorithm describes push-vector. This algorithm is truly
distributed and does not involve any fusion center. Push-vector
continues until the relative update of the average is below a
certain threshold.

Lemma 2: If Qi = {x ∈ Rn|Aix = bi}, Q = ∩{Qi|i ∈
V } and Eq. 1 has a solution x∗ ∈ Q, then any sequence
generated by Algorithm 3 converges to a fixed point x∗ ∈ Q
for ρ = 1.

Proof: Since D-RK has similar structure as Par-RK except
for averaging scheme, to prove the convergence, it is enough
to show that push-vector is equivalent to row projection of RK.
From above definition the update of zth component of xt(i) and
xt(j) is given by

xt+1
(i)z = xt+1

(j)z =
xt(i)z + xt(j)z

2
(4)

Let us assume yt = {0, · · · , xt(i)z, x
t
(j)z, · · · , 0} be a vector

consisting of xt(i)z and xt(j)z at ith and jth position respec-
tively. Also, assume a plane whose ith and jth components
are related by −mi + mj = 0. Therefore, the coefficient
a = {0, · · · ,−1, 1, · · · , 0}, ‖a‖2 = 2 and b = 0. Now, from
RK Algorithm 1 we have

yt+1 = yt + ρ
(b− 〈a, yt〉) a
‖a‖2

= yt − ρ 〈a, y
t〉a

2

= (0, · · · , xt(i)z, x
t
(j)z, · · · , 0)−

ρ

2
(−xt(i)z + xt(j)z)

(0, · · · ,−1, 1, · · · , 0)
for ρ = 1 we have,

= (0, · · · ,
xt(i) + xt(j)z

2
,
xt(i)z + xt(j)z

2
, · · · , 0)

This is equivalent to expression in Eq. (4). Similarly, we can
extend this argument for every component z ∈ {1, · · · , n} of
the vector. Hence, push-vector updates are equivalent to row
projection of random kaczmarz for ρ = 1.

Push-vector in D-RK performs gossip only with one neigh-
boring node at any time slot t. In a wireless sensor net-
work, each node has an advantage of inherently broadcasting
the messages to its neighbor within a certain radius. Now
at the cost of one transmission, a node can gossip with
all of its neighbors, andthishasbeen studied under broadcast

gossip [2].The broadcast gossip, however, converges to a
consensus rather than an average as the weights used there
does not preserve the sum (i.e., 1TW 6= 1T ). This will affect
the convergence analysis of D-RK and will be studied in future.

IV. CASE STUDY - DECENTRALIZED SEISMIC
TOMOGRAPHY

In this section, we use volcano monitoring as a case study
to evaluate the performance of our proposed algorithms. Vol-
cano monitoring is one such application where distributed least
squares is mandatory for real-time high-resolution imaging that
can help scientists to analyze and predict the occurrence of
volcanoes in real-time [26]. Here, we first provide an overview
of the seismic imaging problem along with the experimental
setup on CORE. Later, we evaluate the performance of our
proposed method with state of the art algorithms. Finally,
we also show the applicability of our methods towards real
volcano monitoring using trace data from Mt. St. Helens, WA.

A. Overview

The current seismic imaging system uses sensors (geo-
phones) deployed on the volcano to acquire travel time of the
acoustic wave, known as P-waves, generated by underground
seismic activities such as earthquakes. The received travel
times are then used to derive the internal velocity structure
with which one can monitor the volcano edifice. The principle
of seismic tomography is illustrated in the Fig. 3. The travel
time tomography involves three main steps: (i) sensor nodes
(green triangles on the surface) measure seismic vibration after
occurrence of earthquake and estimate and calculate the arrival
time of the p-wave [20] to form bi, ii) this is later used to
estimate origin time and location of earthquake given prior
estimate of geological structure, (iii) at each node i, ray tracing
is performed (blue rays) from earthquake location to sensor
node to form Ai, and (iv) using these ray information, a 3D
tomography reconstruction of the velocity structure x of the
volcano is obtained by solving the linear system Aix = bi in
a decentralized way.
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Fig. 3. Illustration of process of seismic tomography and decentralized
network topology. (a) Principle of travel-time seismic tomography. (b) Real-
time In-situ Seismic Imaging network.

Typically, to test tomography inversion algorithm a syn-
thetic model is used. This serves two purpose: a) the real
data set such as from Mt. St Helens do not have an exact
ground truth b) simulations using synthetic model enables us
to investigate individually various phenomena which cannot be
separated physically. For example, p-wave data always contain
noise due to measurement and scattering, but simulation can
indicate the specific effect separately. Therefore, we first test



our algorithm using a synthetic model and later with real data
trace from Mt. St. Helens. To evaluate the Par-RK and D-RK,
a data generator is implemented to generate a magma area
(Fig. 4(a)) and earthquake events assuming the tomography
model is a cube of dimension 10 × 10 × 10 km. Then we
set a predefined magma area as the ground truth as shown in
Figure 4(a). The velocities of seismic waves inside and outside
the magma area are V and 0.9V where V is 4.5km/s which is
a typical P-wave velocity.

B. System Setup

To evaluate the network performance of the proposed
algorithm we setup a simulation framework on CORE 2

which supports the implementation of custom protocols for
WSN [1]. For an efficient communication on WSN in a
harsh, unpredictable environment, we developed Bundle Layer
Protocol, which adopts the properties of Disruption-Toleration
Network (DTN) technique to maintain efficient and reliable
end-to-end connectivity [26]. In our design, the data is buffered
into a bundle and then transferred hop by hop in a store-
and-forward manner until it arrives at the destination. Our
implementation of the bundle layer does not make any changes
to underlying network services and TCP for one-hop reliable
bundle transfer and uses the routing table to indicate the
next hop. We use BATMAN (Better Approach to Mobile Ad-
hoc Networking) [13] routing protocol which minimizes the
network overhead by maintaining only next hop neighbor entry
to forward messages from a source to the destination.

The two proposed algorithm have different communication
paradigm, i.e., Par-RK uses a fusion center whereas D-RK
gossips only with its neighbors. We implement Par-RK using
Aggregation Tree [21] while gossip using [16]. Both gossip
and aggregation tree protocol runs on top of bundle layer
that ensures reliability while performing summation over the
network. We refer to [14] for the implementation details, and
we skip them in this paper.

A network of 100 nodes (Fig. 4(b)) are setup in the
CORE to monitor the magma area. We set the seismic image
resolution to be 32× 32× 32 where each block is of the size
0.315 km3. The data generator then generates 500 earthquake
events with random location and time and calculates ray travel
time from event location to all sensor nodes. A white Gaussian
noise is added to the travel time to simulate the event location
estimation and ray tracing errors. Each node can calculate the
predicted travel time based on the initial model in different
resolution.

In the implementation, the Par-RK and D-RK is performed
for 10 iterations locally to solve the equations on each node.
We use the relative update (φ) of the estimation between the
two sweeps (one sweep means that all partial solutions are
averaged to calculate next iterate) as the stopping criteria.
If the relative update (φ) is less than a tolerance value,
the algorithm terminates. Performance of the algorithms are
compared using their relative update (φ), relative residual (χ)
and relative error (δ) given by: χ = ‖Axk − B‖/‖B‖, φ =
‖x(k+1) − x(k)‖/‖x(k)‖, and δ = ‖x(k) − xtruth‖/‖xtruth‖

2http://cs.itd.nrl.navy.mil/work/core/

(a) 3D Synthetic Phantom (b) Station setup in CORE

Fig. 4. (a) 3D synthetic magma model (b) Snapshot of the CORE GUI which
displays the nodes along with communication link.

C. Correctness and Accuracy

In this set of experiments, we intend to demonstrate the
correctness of our algorithm through visualization. We stopped
the algorithm when its relative update φ ≤ 0.001. Fig. 5 shows
the result slice by slice along the X and Y axes and Fig. 5(d)
we have the ground truth. Each row of the figure shows the
same tomography slice on some layer along with X or Y
axes (the total layers of each figure is equal to the resolution
dimension of the result). The black polygon gives the cross
section outline of the surface of magma area represented in
Fig. 4(a). From this experiment, we can see that both Par-RK
and D-RK were able to generate tomography image almost
similar to centralized RK. From the detailed examination of the
Fig. 5 we can say that, Par-RK produces fewer artifacts near the
boundary whereas, D-RK has sharper differences. We believe
this is due to the fact that Par-RK calculates true average unlike
D-RK. This evaluation suggests that both Par-RK and D-RK
can be a good candidate for distributed tomographic inversion.

Next, we compare the performance of the proposed algo-
rithm in terms of the relative update. We compare Par-RK
with algorithms like Cimmino, CAV, and DROP, which are
all algorithms used to solve the system of linear equations
using fusion center. On the other hand, we compare D-RK with
decentralized algorithms such as EXTRA [27] and DGD [32]
and results are shown in Fig. 6. From Fig. 6(a) we can infer
that Par-RK performs better than other parallel methods in
terms of convergence. This is due to the faster convergence rate
of RK method compared to other methods. In case of D-RK
(Fig. 6(b)) we see that it is faster than DGD, however, slower
than EXTRA. In EXTRA, an optimal step size is calculated to
accelerate the convergence. It should be noted that, Par-RK has
faster convergence compared to D-RK and is because of the
faster mixing of the partial solutions at the expense of fusion
center and multi-hop aggregation scheme.

D. Communication and Robustness

In this section, we compare the communication cost of
the centralized algorithm with proposed distributed algorithms
in terms of number of messages exchanged to reach the
solution. Here for centralized and parallel case SINK(M) and
SINK(C) refers to sink (fusion center) node placed in middle
and at the corner respectively. From Fig. 7(a) we can see that
communication cost in a centralized setup is high near the
SINK as all the ray information is transferred over the network



X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(a) Par-RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(b) D-RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(c) RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(d) Ground Truth

Fig. 5. 2D vertical slice of 3D Tomography using Synthetic Data. Top row represents slice 16 of 32 and bottom row represents slice 18 of 32 of different
algorithms.
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Fig. 6. Comparison of (a) Par-RK and (b) D-RK with different parallel and
distributed algorithms.

to sink before the computation. In this case, the volume of data
is proportional to the number of earthquakes and also number
of stations. Fig. 7(b) shows the communication pattern for Par-
RK and from this we can see that the communication cost
is lesser compared centralized scheme (RK). This is mainly
because communication cost in Par-RK depends on number
of iteration and typically with the semi-convergent property
of iterative methods [9] the number of iteration is much less
compared to the number of earthquake events.

In Fig. 7(c) we present the communication pattern of D-
RK, which is flat compared to Par-RK and RK. Neighbor
gossip helps us to balance the load in the network while
avoiding other overheads such as routing, etc. It should be
noted that due to the slower convergence of D-RK compared
to Par-RK, a larger volume of packets will be exchanged in
the entire process. This is verified from Fig. 7(d) where we
compare volume (bytes) transferred in all the three settings.
Fig. 7(d) shows that in case of SINK(M) volume of bytes
transferred Par-RK is lower than D-RK, which is due to the
slower convergence as mentioned earlier. However, placing
SINK(C) at the corner increases the communication cost of
the Par-RK, and this is due to packet loss caused by increased
congestion. It should be noted that D-RK has no effect on the

placement of SINK node as it communicates only with the
neighbors..
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Fig. 7. Communication Cost

In the next set of experiments, loss tolerance and robustness
of proposed algorithms are evaluated. The algorithm runs with
the same configuration for a packet loss ratio of 20% in the
emulator. Fig. 8 gives part of the 2D slice rendered along
Y axes with packet loss. We can see that in Par-RK and D-
RK with 20% packet loss there is no significance difference
in terms of the magma area outline when compared to the
results with no packet loss Fig. 8(c). Since the computation
is distributed, and all the nodes are involved in slowness
calculation, the proposed algorithm is tolerant to a severe
packet loss. A closer look at the result tells that packet loss in
Par-RK has a slightly larger effect compared to D-RK. This



can be seen in the visualization result where D-RK can get a
sharper image than Par-RK. This result can be attributed to the
truly distributed communication as opposed to fusion center
in Par-RK. Loss of packet near fusion center has a profound
effect on the tomography result, whereas D-RK can tolerate
such single point failures.
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Fig. 8. Robustness of distributed algorithms in terms of packet loss.

V. IMAGING OF MT. ST. HELENS, WASHINGTON, USA

Mount St. Helens (MSH), WA, USA situated in Pacific
northwest cascade region erupted on May 18, 1980 and was
one of the deadliest volcano in the history of United States,
killing 57 people and destroying several homes. MSH is one
of the most widely studied volcanoes in the world mainly due
its recent volcanic activity and also due its unusual sideways
eruption, which surprised many geophysicists and questioned
many the existing theory. Due to its location close to human
habitat there is an increasing effort to understand the dynamics
of this volcano and to obtain high-resolution imagery.

A. Distributed Algorithms for Real Data

In this section, we assume that all the raw data has been
pre-processed to form a subsystem at each node. Real data
measurements are often prone to severe measurement noise
making the linear system often inconsistent, i.e., Ax = b+ r.
Because of this solutions obtain from simple RK does not
describe actual tomography [18]. To obtain satisfactory re-
sults, we must add additional constraints such as regularity
or smoothness to RK that suppresses unwanted noise. This
process is termed as regularization which is required to avoid
strong, undesired influence of small singular values dominating
the solutions. The solution xλ is defined as the solution to the
regularized problem

xλ = argmin
x

1

2
‖Ax− b‖22 + λ2‖x‖22 (5)

Here, the regularization parameter λ is a positive number
that controls the weight between ‖Ax − b‖22 (goodness fit
measurement) and ‖x‖22 (regularity measurement). The larger
the value of λ, the more weight is given to the minimization
of the solution norm. On the other hand, small λ means more
weight is given to fit the noisy data. This type of regularization
is commonly known as Tikhonov regularization [9].

To solve Eq. 5, Bayesian version of RK was proposed by
G.T Herman [10], [11]. Since the system is inconsistent, we
consider, Ax+r = b where, r is chosen such that given any x,
r = b− Ax. With this assumption, the system becomes well-
posed. Therefore, we solve for x and r simultaneously,i.e.,
[λI A][r s]T = b. This modification makes the system
consistent and the solution to this is also the solution to the

regularized Eq. (5). Now, by applying RK to modified equation
we obtain Bayesian RK (BaRK) given in Algorithm 4, where,
ai is the ith row of A (aTi is its transpose), êi is a unit vector
with ith element set to one, ρk relaxation parameter and λ is
the regularization parameter. BaRK can be treated as RK with
regularization which is necessary for the systems that are ill-
posed and have high noise. In the experiment with real data,
we replace RK in our proposed distributed algorithms with
BaRK. The convergence property of the modified algorithm
remains the same and we skip the details in this paper.

Algorithm 4 Bayesian RK (BaRK)

1: Initialize: r0 ← 0;x0 ← 0
2: for k ← 0 until convergence or maximum number of iteration

do
3: Pick i ∈ {1, · · · .m} with probability pi = ‖ai‖

2
2

‖A‖2
F

4: d(k) = ρ(k)
bi−λ(r

(k)
i )−(aTi ·x

(k))

λ2+‖ai‖2

5: x(k+1) = x(k) + d(k)ai
6: r(k+1) = r(k) + λd(k)êi
7: end

B. Experiment Setting

In this section, we study and present a P-wave velocity
model for Mount St. Helens (MSH) using our proposed
distributed algorithm. The results are verified by comparing
it with the centralized algorithm BaRK [18]. We used the data
set from [18] which has data from 78 stations spread over
160 × 200 kms in area. The depth analyzed in this paper is
up to 24 km. A total of 1141 earthquake event data are used
which gave around 18161 rays. Each station records different
sets of earthquake events due to its location and accuracy. Due
to this, the number of rays traced at each station varied from
0−1141. Fig. 9(a) shows the distribution of rays traced across
each station. For the distributed tomography, ray count at each
station is equivalent to number of rows of linear system at that
station and nodes with ray count zero does not involve in the
computation.
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Fig. 9. Non-uniform distribution of rays and events at Mt St Helens. (a)
Number of event from Mt. St. Helens detected by different nodes. (b). Black
dots and squares denote the location of the earthquake and station location
respectively and the red triangle denotes the location of the crater.

In this paper, the column size (i.e resolution dimension)
is around 160 × 200 × 24 = 768000 and with such high
dimension, methods involving full gradients such as [32]
can be challenging. Geophysicists calculate relative seismic
velocity variations (V relP ) to monitor the volcano edifice.



This velocity can be represented as a 3D map of slices of
earth, depicting the regions of higher or lower seismic wave
velocity. The region where seismic waves move more slowly,
is interpreted to be due to the presence of warm, partially
melted rock; that is the crustal magma storage region. The
final solution x obtained from distributed algorithms represents
V relP which is shown in Fig. 10.

Notice that unlike synthetic data used in previous section,
there is no ground truth for the velocity of MSH. Hence
we focus on the comparison of the proposed methods with
a centralized processing scheme, which can be seen as a
benchmark that fully utilize the data available. Interpretation
of this data requires in-depth knowledge of geophysics and
is out of the scope of this paper. Final result generated by
three algorithms are provided in Fig. 10. From the result
we can see that Par-RK (top row) and D-RK (middle row)
can generate tomography similar to centralized BaRK (bottom
row) for two different depths. The low velocity region (blue)
which represents partially melted rock or magma can be
identified more clearly by distributed algorithms as opposed
to high velocity region (red). This depends on the selection of
regularization and smoothing constraints that decides weights
on the values of the solutions. This kind of tomography can
provide scientists an initial reference in real-time which could
be used for further research and also for hazard mitigation.

(a) Depth 2.9 km (b) Depth 4.9 km

Fig. 10. Relative velocity perturbation map of MSH at different depths. Top
row shows V relp using Par-BaRK, while middle row show results of D-BaRK
and bottom row using centralized BaRK.

VI. DISCUSSION AND FUTURE WORK

The proposed distributed algorithms require synchroniza-
tion between computation and communication. This can be
very challenging in large-scale systems, where synchronization
requires extra overhead. To avoid this, we are exploring
distributed asynchronous methods that need not wait for others
to finish computation or communication. We have designed
and implemented both hardware and algorithms for volcano
monitoring, and we have deployed 20 stations on Llaima
volcano in Chile for the first phase of testing. Currently, nodes
are running simple algorithms for recording seismic waves and
pre-processing of the data. In future, we intend to implement
the proposed distributed algorithms on such systems for real-
time volcano monitoring.

VII. CONCLUSION

In this paper, we presented two distributed algorithms to
compute least-squares solution in a loosely coupled system
such as a WSN. We first presented Par-RK, that uses fusion
center to merge the intermediate result. Later, we eliminated
fusion center using gossip method to make it truly distributed.
These algorithms are designed specifically for a large sparse
system of linear equations. Performance evaluation of both
these algorithms for seismic application showed that they
are robust in terms of both computation and communication.
Further, we also tested our algorithms using real data traces
from Mt. St. Helens and the results obtained from proposed
methods was close to that of a centralized approach. The
robustness and loss tolerance feature of Par-RK and D-RK
are very attractive which makes it suitable for sensor network
applications.
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APPENDIX A
PROOF OF LEMMA 1

Proof: The proof is by induction on m. For m = 1, there is
nothing to prove. For m = 2, project y0 onto the plane defined
by the equation −y1 + y2 = 0. The vector of coefficient of
a are {−1, 1, 0, · · · , 0} and ‖a‖2 = 2. The projection ỹ =
{ỹ1, ỹ2, · · · } is

ỹ = y0 − 1

2
〈y0, a〉a

= (y01 , y
0
2 , · · · )−

1

2
(−y01 + y02)(−1, 1, 0, · · · , 0)

=

(
1

2
(y01 + y02),

1

2
(y01 + y02), y

0
3 , y

0
4 , · · ·

) (6)

In other words, for m = 2 nodes we obtain ỹ1 = ỹ2 =
(y01+y

0
2)

2 by performing one orthogonal projection on a suitable
hyperplane. We assume that the statement is true for m, and we
will prove it for m+1. Let, y0 = {y01 , · · · , y0n} and we project
y0 onto the hyperlane defined by the equation −y1 − y2 · · · −
ym +mym+1 = 0. Now, a = (−1, · · · ,−1,m, 0, · · · , 0) and
‖a‖2 = m+m2 = m(m+1). The projection is the point y′ =
{y′1, · · · , y′n‖ defined by y′ = y0 − (〈y0, a〉a)/(m(m + 1)).
Substituting y0 and a, we have

y′ = (y01 , · · · , y0n)−
−y1 − y2 · · · − ym +mym+1

m(m+ 1)

(−1, · · · ,−1,m, 0, · · · , 0)
For each 1 ≤ i ≤ m, we have

y′i = y0i −
1

m(m+ 1)

 m∑
j=1

y0j −my0m+1

 ,

and the (m+1)st coefficient is

y′m+1 = y0m+1 +
(y01 + · · ·+ y0m −my0m+1

m(m+ 1)
m

=
1

m+ 1
(y01 + · · ·+ y0m) +

(
1− m

m+ 1

)
y0m+1

=
1

m+ 1
(y01 + · · ·+ y0m) +

m+ 1−m
m+ 1

y0m+1

=
1

m+ 1
(y01 + · · ·+ y0m + y0m+1)

(7)

This proves the induction hypothesis and the lemma


