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Large-Scale Maintenance and Unit Commitment:
A Decentralized Subgradient Approach

Paritosh Ramanan∗†,Murat Yildirim‡, Nagi Gebraeel† and Edmond Chow∗

Abstract—Unit Commitment (UC) is a fundamental problem
in power system operations. When coupled with generation
maintenance, the joint optimization problem poses significant
computational challenges due to coupling constraints linking
maintenance and UC decisions. Obviously, these challenges grow
with the size of the network. With the introduction of sensors
for monitoring generator health and condition-based mainte-
nance(CBM), these challenges have been magnified. ADMM-
based decentralized methods have shown promise in solving
large-scale UC problems, especially in vertically integrated power
systems. However, in their current form, these methods fail to
deliver similar computational performance and scalability when
considering the joint UC and CBM problem.

This paper provides a novel decentralized optimization frame-
work for solving large-scale, joint UC and CBM problems. Our
approach relies on the novel use of the subgradient method to
temporally decouple various subproblems of the ADMM-based
formulation of the joint problem along the maintenance horizon.
By effectively utilizing multithreading, our decentralized sub-
gradient approach delivers superior computational performance
and eliminates the need to move sensor data thereby alleviating
privacy and security concerns. Using experiments on large scale
test cases, we show that our framework can provide a speedup
of upto 50x as compared to various state of the art benchmarks
without compromising on solution quality.

Index Terms—Sensor driven prognosis, Joint operations and
condition based maintenance, Decentralized and multithreaded
optimization, Vertically integrated power systems.

NOMENCLATURE
Sets:

Nr, Gr,Ur,Vr, Ir Neighboring regions, generators, foreign,
boundary & internal buses of region r.

Gbr,Ubr ,Vbr , Ibr Generators, boundary, foreign & internal
buses connected to bus b ∈ Ur ∪ Ir

R The set of all regions
Br Ur ∪ Vr, Boundary, foreign buses of r.
N b
r Neighboring regions connected to bus

b ∈ Ur
Bbr Ubr ∪ Vbr ∪ Ibr , Neighboring buses of b.
M Maintenance planning horizon
T Operational planning horizon
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Decision Variables (at t ∈ T ):

ygt The electricity dispatch of generator g
xgt ∈ {0, 1} The commitment decision variable of g
zgt ∈ {0, 1} The maintenance variable of generator g

ψbt Demand Curtailment at bus b
θbt The phase angle at bus b

θ̃b,r
′

t The phase angle of bus b where b ∈ Ur′
and r′ ∈ Nr

πgUt, π
g
Dt The up and down variable of generator g

pr,t Production difference at region r
fuvt Power flow from bus u to v such that u ∈ Ur

and v ∈ Vur
αg The Lagrangian multiplier for maintenance

cardinality constraint of generator g
λbt The Lagrangian multiplier with respect to

phase angles of bus b where b ∈ Ur
⋃
Vr

φuvt The Lagrangian multiplier with respect to flow
from bus u to bus v where u ∈ Ur and v ∈ Vr
for any region r

ηr,t The Lagrangian multiplier with respect to
production target at region r

Constants:

dg, cg, SgU , S
g
D The dispatch, commitment , start-up and

shut-down cost of generator g
µgU , µ

g
D, R

g Minimum up time, down time and ramp-up
ramp-down constant for g

δbt The demand at bus b at t ∈ T
Fuvmax Maximum capacity of line connecting buses

u and v such that u ∈ Ur and v ∈ Vur
ρθ, ρf Penalty parameter for phase angles, flows
Γuv Phase angle conversion for line uv

I. INTRODUCTION

Power network operations has traditionally been represented
by the well-studied UC problem [1]. The UC problem opti-
mizes generator commitment and production decisions subject
to network topology, transmission, and generation constraints.
Maintenance of generation assets like generators and turbines
has received a fair share of attention in the literature [2], [3].
However, most of the research has focused on periodic and
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calendar-based maintenance schedules where the goal is to
optimize maintenance intervals to minimize maintenance cost
[3]. Few research efforts have tried to integrate maintenance
with network operations. Some noteworthy examples include
[4], [5], [6]. These problems typically focus on a vertically
integrated power system setting involving periodic mainte-
nance schemes. Today, the rise of digital frameworks like the
Internet-of-Things (IoT) is transforming the power generation
industry. It has also highlighted the importance of leverag-
ing IoT technologies like condition monitoring to advance
maintenance management, i.e., condition-based maintenance
(CBM). As a result, recent works have studied the integration
of condition based maintenance (CBM) with operations and
demonstrated significant cost savings by incorporating sensor-
based predictive analytics [7], [8]. This paper provides a
novel decentralized optimization framework to address the
computational challenges in solving the joint UC and CBM
optimization problem for large scale power networks.

The joint UC and CBM problem is significantly more
complex than the standard UC problem because it involves
maintenance and commitment coupling constraints. Moreover,
the planning horizon for the joint problem tends to be in the
order of months due to the timeline of maintenance decisions,
whereas for UC it is typically 24 hours. Given the long
planning horizons, the number of binary variables related to
maintenance decisions are orders of magnitude greater than
the conventional UC problem setting.

From a computational standpoint, decentralized solution
methodologies, such as alternating direction method of mul-
tipliers (ADMM), have been widely used to improve com-
putational performance of large scale mixed integer planning
problems like UC [9], [10], [11], [12]. These solution method-
ologies rely on decomposing the power network topology into
multiple autonomous regions. The methods iteratively apply
ADMM by dualizing network flow constraints corresponding
to transmission lines between regions. However, conventional
ADMM-based decentralization approaches are not sufficient to
solve large scale instances of the joint UC and CBM problem.
This is because the local regional subproblems themselves
become orders of magnitude more complex than the corre-
sponding regional subproblems found in decentralized UC.
Therefore, a direct adaptation of ADMM-based decentraliza-
tion is not sufficient to address the computational complexities
of the joint problem.

In addition to computational benefits, an added capability of
decentralized methods also rests in its ability to significantly
reduce or eliminate the need to move data [9], [11], [12].
The digitization of the grid due to an influx of IoT enabled
sensors, has led to important questions on the security, privacy
and handling of sensor data. In fact, the U.S. Department
of Homeland Security’s Industrial Control Systems (ICS)
Cyber Emergency Response Team indicates that the energy
sector accounts for nearly 35% of all ICS-related incidents
in the United States[13]. Moreover, within power systems,
estimating operating conditions of generation equipment fol-
lowed by communication between multiple subsystems have
been deemed essential system functions likely at risk to
cyber attacks [14]. Needless to say, the reliance of CBM

methodologies on IoT driven sensor data makes it a perfect
candidate for cyber attacks and potential misuse of sensor
datasets by malicious parties. The need to frequently transmit
highly resolved sensor data from a vast number of assets to a
centralized database amplifies the risks of potential data leaks
by providing a greater attack surface for intruders [14]. As a
result, data manipulation attacks could take place which could
lead to inaccurate estimates of asset health [15], [16] directly
affecting maintenance policies and the overall stability of the
grid. By preserving sensor data privacy and eliminating the
need for its transmission, decentralized methods significantly
reduce the risks of data leaks leading to enhanced security
measures.

While decentralization has several benefits, the unique as-
pects of our joint maintenance and UC problem present numer-
ous computational complications. The basis of our approach
rests on the efficient decomposition of large scale instance
of the joint UC and CBM optimization problem along the
temporal and regional domains. Our approach relies on the
novel use of the subgradient method to temporally decouple
various regional subproblems of the ADMM-based problem
formulation along the maintenance time horizon. The regional
decomposition is solved in a decentralized fashion while the
temporal decomposition is leveraged for multithreading.

Instead of directly solving each subproblem locally as
proposed in [9],[11],[17] the introduction of the subgradient
method enables us to deftly leverage multithreading to trans-
form the complex joint problem formulation into a highly
scalable, computationally efficient one. Next, we iteratively
employ ADMM [18] to balance power flow between neigh-
boring regions by dualizing the flow constraints corresponding
to respective tie lines. Our specific contributions in this paper
are summarized as follows:

• We develop a computationally efficient, decentralized,
multithreaded subgradient method for solving large in-
stances of the joint UC and CBM optimization problem.
Existing ADMM-based decentralization models [17],
[11], alone are not sufficient to solve such large scale
instances. Therefore, our method relies on exploiting
the block diagonal structure obtained by dualizing the
maintenance cardinality constraints. This paves the way
for applying the subgradient method to the local subprob-
lems which can effectively leverage multithreading. Our
method therefore, transforms the joint formulation into a
massively parallelizeable solution framework.

• Using our decentralized approach, we eliminate the need
to move any critical sensor data required for mainte-
nance scheduling at every region. This respects data
residency requirements and significantly reduces cyber-
security threats that can arise from leaked IoT data.

• For evaluation purposes, we develop a High Performance
Computing (HPC) implementation of our decentralized
framework based on a hybrid Message Passing Interface
(MPI) and OpenMP frameworks. We assign every region
to an MPI process and multiple OpenMP threads to every
region to achieve a scalable and efficient implementation.

The complexity of the joint problem is evidenced by the
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fact that the solution to the IEEE 3012 bus case over a
planning horizon of 3 months required approximately 48 hours
by state-of-the-art commercial solvers. On the other hand,
our multithreaded, decentralized solution paradigm delivered a
speedup of up to 50 in some cases by effectively leveraging the
computational power of 1200 threads orchestrated on a state-
of-the-art supercomputer. The nature and scale of compute
employed in this paper is in stark contrast to existing large-
scale, decentralized UC implementations [11], [12], [17] which
only required using up to 120 threads for the same problem
instances.

In Section II, we review relevant literature pertaining to
decentralized optimization of power systems. Details of the
decentralized CBM problem formulation are discussed in
Section III. In Section IV, we develop the decentralized joint
CBM and operations algorithm that preserves regional data
privacy. In Section V, we present our experimental results
followed by conclusion and future work in Section VI.

II. RELATED WORK

Large scale problems in power systems are characterized
by long planning horizons and large network sizes. While dis-
tributed and decentralized algorithms have both been applied
towards solving large scale power system problems, there is
a subtle but profound difference between the two categories.
Distributed algorithms like those based on cutting planes are
typically characterized by the presence of a master process
that coordinates the entire computational progress [10]. On the
other hand, decentralized algorithms, while being parallel and
distributed in nature, function even in the absence of a master
process [11]. As a result, decentralized approaches yield two
important benefits that are not possible otherwise in generic
distributed approaches relying on a master process. Due to
the presence only of peer-to-peer message exchanges, decen-
tralized approaches exhibit greater scalability [12]. Further,
unlike their distributed counterparts, decentralized methods
are based on a topology decomposition of the power network
into multiple regions that are representative of utilities or their
subsidiaries thereof [9]. Each region retains full ownership of
local data and only exchanges flow information pertaining to
shared transmission lines with neighbors [9], [11].

Another important differentiator between generic distributed
algorithms and decentralized approaches is concerning the
implementation aspect. As a consequence of their reliance only
on peer-to-peer message exchanges, a decentralized algorithm
can be implemented on a geographically distributed computing
architecture [10], [11]. On the other hand, decompositions in
distributed algorithms are designed mainly for computational
convenience with the intent of unleashing massive paralleliza-
tion potential [19], [20]. Typically, subproblems in distributed
algorithms emanate from temporal decompositions for deter-
ministic optimization cases [8] and scenario driven decompo-
sitions for stochastic cases [19], [20] without representing any
real world entity. Therefore, such approaches can only function
on a specialized computational system like an HPC cluster that
offers significant parallelization potential but cannot handle
geographically distributed problem instances [10]. Owing to
such tight limitation of the implementation aspect, distributed

approaches force end users to transfer relevant information to
an HPC cluster leading to data privacy concerns [12].

Distributed solutions pertaining to operations have conven-
tionally revolved around stochastic UC [19], [20] with scenario
based decompositions. The work done in [19] solves stochastic
unit commitment problem for a fleet of sustainable energy
sources where the imposed demand is time varying. The
authors in [20] solve a unit commitment problem using an
incremental subgradient method to progress the dual variable
while simultaneously recovering primal feasibility. Lately,
decentralized approaches for solving deterministic UC are
gaining popularity for their enhanced scalability and privacy
preserving aspects as stated above [9], [10], [11], [12].

On the other hand, as mentioned in Section I, efforts
that have focused on integrating maintenance and network
operations are limited and based on the cutting plane method.
Pertinent examples include [4], [5], [6] where models for op-
timizing networks operations integrated periodic maintenance
of assets and transmission lines. In [21], the authors integrated
reliability information, namely generator failure rates, in a
simplified operations problem. The authors in [7], [8] have
proposed a sensor data driven, joint optimization of CBM
with operations which represents the current state of the
art. However, this approach does not scale well with larger
instances on account of limited potential for parallelization.
Therefore, a decentralized technique to solve the joint problem
would be highly beneficial in order to achieve scalability
as well as reduce computational time significantly. However,
decentralized solution paradigms specifically tailored for the
joint maintenance problem have largely remained unexplored.

III. PROBLEM FORMULATION

We propose a decentralized formulation based on regional
decomposition with multiple regional subproblems. From a
practical standpoint, each region may denote a subsidiary of
the utility company in a vertically integrated market. Consider
the sample network in Figure 1 consisting of 3 regions with
boundary and foreign bus categorization defined as follows:
• Region 1: U1 = {B,C}, V1 = {G,E}
• Region 2: U2 = {E}, V2 = {F,C}
• Region 3: U3 = {G,F}, V3 = {B,E}

Every region is comprised of local (critical) generators and
buses subject to its own operational constraints. Every crit-
ical generator is instrumented with sensors for monitoring
health/degradation. Sensor data in each region is streamed to
respective local databases where predictive analytic algorithms
are used to predict the remaining operational life of the
generator. As mentioned earlier, the focus of this paper is not
to develop accurate predictive degradation models but rather
to address the computational challenges in large scale joint
optimization of operations and maintenance in the presence
of IoT-enabled generation assets.

A. Degradation-based Predictive Modeling
Predictive analytics is a crucial aspect of our approach.

Degradation-based sensor data from IoT-enabled generators
are incorporated into the regional operations and maintenance
scheduling problems. We leverage contemporary degradation
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Fig. 1: Partition of Network topology into regions with full
data privacy.

models developed by [22] to compute predictions of gen-
erator remaining lifetimes. The authors in [22] proposed a
Bayesian framework that utilizes real-time degradation signals
from partially degraded assets to predict and continuously
update residual life distributions (RLDs). This framework
was later extended in [23] by computing optimal replace-
ment/maintenance and spare parts ordering policies driven
by real-time RLD predictions. The authors used the RLDs
to calculate a convex maintenance cost function to identify
the optimal time to perform maintenance. The cost function
represents the trade-off between the cost associated with the
risk of unexpected failure and the opportunity cost associ-
ated with performing premature (or unnecessary) preventive
maintenance. As new sensor data is observed, an asset’s RLD
and the corresponding cost function are updated through a
Bayesian framework. [7], [8] adopted this approach in their
joint optimization problem and successfully integrated these
dynamically evolving expected maintenance cost functions.
Considering a maintenance planning horizon M , the expected
maintenance cost function at maintenance interval m ∈ M is
expressed in Equation 1.

ωgm = κ ·
ωgpP (τg > m) + ωgfP (τg ≤ m)∫m

0
P (τg > z)dz +mo

(1)

In Equation 1, ωgm denotes the maintenance cost at epoch
m for generator g of age mo. κ represents the maintenance
criticality coefficient, denoting the relative importance of
maintenance with respect to operations. ωgp and ωgf are the
costs for preventive maintenance, and unexpected failure for
generator g, respectively while τg is the remaining life of
generator g. In other words, the function ωgm translates τg (the
RLD of generator g) into a degradation-based maintenance
cost function over time.

B. Decentralized Joint Maintenance and Operations
We note that the maintenance planning horizon set M

comprises of multiple smaller operational planning horizons

Tm such that,

T =

|M |⋃
m=1

Tm, where, Tm =

{
t|t ∈

[
m|T |
|M |

. . .
(m+ 1)|T |
|M |

]}
Therefore, the regional subproblem seeks to minimize the
objective cost as represented by Problem (2).

Lr(∆) =
∑
t∈T

∑
g∈Gr

[
cgtx

g
t + dgt y

g
t + SgUπ

g
Ut + SgDπ

g
Dt

]
+
∑
t∈T

[
Et(θ̄,φ) +Ht(F̄ ,λ) + It(p̄,η)

]
+ν
∑
t∈T

∑
u∈Ur∪Ir

ψut +
∑
g∈Gr

∑
m∈M

ωgmz
g
m

(2)

where ∆ = {θ̄, F̄ , p̄,λ,φ,η} represents the consensus phase
angle, flow, regional production target and their respective
lagrangian multipliers. Further,

Et(θ̄,λ) =
∑
b∈Br

[
λbt |θbt − θ̄bt |+

ρθ
2

(θbt − θ̄bt )2
]

Ht(F̄ ,φ) =
∑
u∈Ur

∑
v∈Vu

r

[
φuvt |Fuvt − F̄uvt,k |+

ρf
2

(Fuvt − F̄uvt,k )2
]

It(p̄,η) = ηr,t(pr,t − p̄r,t) +
ρp
2

(pr,t − p̄r,t)

The objective function represented by Problem (2), consists
of a commitment, operations and maintenance cost compo-
nents. In addition, it also consists of ADMM penalty terms im-
posed on balancing flow estimates among neighboring regions.
Flow estimates are iteratively balanced across transmission
lines common with neighboring regions as well as with respect
to the phase angles at their respective boundary buses. We
attempt to reduce overall demand violation by determining
a local, customized production target p̄r,t based on global
demand violation. Computing a customized production target
for every region has been shown to yield smooth convergence
in large scale decentralized methods especially from the oper-
ational standpoint [11].

In our decentralized formulation represented by Problem
(2), the operational decision including commitment and pro-
duction are decoupled at linking intervals for every main-
tenance epoch [5], [6], [7], [8], [24]. The decoupling of
minimum up/down, ramping constraints at linking intervals
is a common practice meant to decompose the computation-
ally challenging joint problem into multiple short-term UC
subproblems as illustrated in [5], [6], [24]. Therefore, for a
particular maintenance epoch m ∈M , let Qr

m denote the set
of inequalities (3a)-(3h), ∀t ∈ Tm.

xgt ≤ 1− zgm, ∀g ∈ Gr (3a)

P gminx
g
t ≤ y

g
t ≤ P gmaxx

g
t , ∀g ∈ Gr (3b)

− πgDt ≤ x
g
t − x

g
t−1 ≤ π

g
Ut, ∀g ∈ Gr (3c)

−Rg ≤ ygt − y
g
t−1 ≤ Rg, ∀g ∈ Gr (3d)

Γuv(θut − θvt ) = fuvt , ∀u ∈ Ur,∀v ∈ Vur (3e)

− Fuvmax ≤ Γuv(θut − θvt ) ≤ Fuvmax, ∀u ∈ Ur ∪ Ir,∀v ∈ Bur
(3f)
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∑
∀g∈Gu

r

ygt − δut + ψut =
∑
∀v∈Bu

r

[Γuv(θut − θvt )],∀u ∈ Ur ∪ Ir

(3g)∑
∀i∈Ut

πgUi ≤ x
g
t ≤ 1−

∑
∀i∈Dt

πgDi, ∀g ∈ Gr,

Ut = [t− µgU + 1, t], Dt = [t− µgD + 1, t]

(3h)

Constraint (3a) ensures that a generator that has been placed
under maintenance must not have any production. Constraint
(3b) enforces production limits at each generator while Con-
straints (3c) and (3h) enforce minimum up and down-time for
each generator. Constraint (3d) enforces their respective ramp-
ing limitations. Equation (3e) establishes the linear relationship
between flow and their respective phase angles. Constraint
(3f) enforces transmission line capacity constraints. Equation
(3g) balances the demand at each bus with local generation
and network flow. Equations (3e)-(3g) enforce network flow
constraints globally. Therefore, the joint CBM and operations
problem can be represented by Problem (4).

min Lr(∆) (4a)

s.t.
∑
m∈M

zgm = 1, ∀g ∈ Gr (4b)

x,y, z,πU ,πD,θ,f ∈ Qr
m, ∀m ∈M (4c)

In Problem (4) Constraint (4b) represents the maintenance
cardinality constraint. Specifically, Constraint (4b) ensures that
maintenance must be performed on each generator exactly
once during the maintenance planning horizon. We also note
that our formulation represented by Problem (4) does not make
any assumptions on the length of the maintenance epochs.
Therefore, the same decentralized, subgradient based approach
proposed in this section is capable of handling different values
of lengths of maintenance epochs (like 2 weeks, 3 weeks etc.).

We estimate two important consensus quantities, i.e. inter-
mediate flow denoted by F̄uvt and intermediate phase angles
denoted by θ̄bt based on Equations (5),(6) respectively. These
intermediate values are calculated based on the phase angle
estimates received from neighboring regions ∀b ∈ Br and
∀u ∈ Ur,∀v ∈ Vr for phase angles and flows respectively
applied ∀t ∈ T .

θ̄bt =

θbt +
∑

r′∈N b
r

θ̃b,r
′

t

|N b
r |+1

, b ∈ Br (5)

F̄uvt =
Γuv(θ̃u,r

′

t − θ̃v,r
′

t ) + Γuv(θut − θvt )

2
,

u ∈ Ur, v ∈ Vur , r′ ∈ N u
r (6)

We update the Lagrangian multipliers λ, φ based on Equations
(7),(8) respectively.

λbt = λbt + ρθ(θ
b
t − θ̄bt ), ∀b ∈ Br,∀t ∈ T (7)

φuvt = φuvt + ρf (Fuvt − F̄uvt ), ∀u ∈ Ur,∀v ∈ Vr,∀t ∈ T
(8)

We estimate the customized production target for region r

based on Equation (9).

p̄r,t =
∑
∀g∈Gr

ygt +

∑
∀r∈R

ϕr,t

|R|
(9)

In Equation (9), ϕr,t =
∣∣∣ ∑
∀u∈Ur

⋃
Ir

(δut − ψut ) −
∑
∀g∈Gr

ygt

∣∣∣
represents the local violation ∀t ∈ T . We update the associated
Lagrangian η based on Equation (10).

ηr,t = pr,t + ρp(pr,t − p̄r,t) (10)

Therefore, the joint optimization model given by Problem (4)
describes a Mixed-Integer Quadratic Problem (MIQP) which
solves for the maintenance and operations in a decentralized
manner. The Lagrangian terms in the model serve as penalties
for deviating from a position of balance. Convergence occurs
when the dualized flow terms become small enough so that
the optimization problem given by (4) become mathematically
equivalent to that of a centralized problem as described in [8].
We are now in a position to state Lemma 1.

Lemma 1. Let Lr(∆) represent the objective of Problem (4)
subject to constraints (4b),(4c), then∑

m∈M
min
Qr

m

Lmr (∆,α) ≤ min Lr(∆)

where, αg represents the dual variable with respect to Con-
straint (4b)

Proof. Dualizing Equation (4b) with the dual variable αg , we
obtain the Lagrangian relaxation L̂r

L̂r = Lr(∆) +
∑
g∈Gr

αg(1−
∑
m∈M

zgm) =
∑
m∈M

Lmr (∆,α)

(11)
where,

Lmr (∆,α) =
∑
t∈Tm

[
Et(θ̄,φ) +Ht(F̄ ,λ) + It(p̄,η) + ν

∑
u∈Ur∪Ir

ψut

]
+
∑
g∈Gr

[ ∑
t∈Tm

[
cgtx

g
t + dgt y

g
t + SgUπ

g
Ut + SgDπ

g
Dt

]
+ (ωgm)zgm

]

+
∑
g∈Gr

αg

(
1

|M |
− zgm

)
Let ϑ̄ = {x,y, z,πU ,πD,θ,f} be the optimal solution
to Lr(∆) (i.e. Problem (4)). With this solution fixed, z̄
ensures (1 −

∑
m∈M

zgm) = 0 ∀g ∈ Gr, which would enforce

i)
∑
g∈Gr

αg(1−
∑
m∈M

zgm) = 0, and ii) L̂r|ϑ̄= Lr(∆)|ϑ̄.

Let ϑ′ and F be the optimal solution, and the set of feasible
solutions for L̂r, respectively. Note that the solution ϑ̄ is
still feasible for the lagrangian relaxation (i.e. ϑ̄ ∈ F), it
is trivial to conclude L̂r|ϑ′= minϑ∈F L̂r|ϑ≤ L̂r|ϑ̄. Since,
L̂r|ϑ′≤ L̂r|ϑ̄= Lr(∆)|ϑ̄, we conclude:

min⋃
m∈M

Qr
m

L̂r =
∑
m∈M

min
Qr

m

Lmr (∆,α) ≤ min Lr(∆) (13)

We note that minimizing L̂r is equivalent to minimizing each
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of the individual terms Lmr since their respective constraint
sets Qr

m’s are disjoint ∀m ∈M .

As a result of Lemma 1, in order to perform one solve
of Problem (4) it suffices to iteratively solve Lmr in a multi-
threaded parallel fashion ∀m ∈ M followed by an update of
αg using the subgradient method outlined in [25].

IV. ALGORITHM DESIGN FOR JOINT DECENTRALIZED
MAINTENANCE AND OPERATIONS

We divide the joint, decentralized optimization algorithm
into four distinct parts. Each component pertains to the lo-
cal multithreaded solver, peer-to-peer communication scheme,
decentralized optimization frameworks based on convex relax-
ation and the subgradient methods respectively.

A. Local Multithreaded Optimization Solver
function MTOPT(α,Lr(∆),Qr)
for m = 1, 2 . . . |M | using multithreading do

solve min
Qr

m

Lmr (∆, α) using Lemma 1

end for
return {x,y, z,θ,f ,ϕ}

end function
The entire decentralized joint problem relies on a local opti-
mization solver represented by function MTOpt. Owing to its
completely decoupled nature along the maintenance planning
horizon as detailed in Lemma 1, we apply multithreading to
solve Problem (4) in parallel to boost computational efficiency.
Therefore, given an objective function Lr(∆), a Lagrangian
estimate α of Constraint (4b) and a constraint set Qr, function
MTOpt applies M threads to solve one iteration of the local
joint problem.

B. Peer to peer Communication
function COMMUNICATE(k,∆k−1,θk,fk,ϕk)

send θb,k to all regions r′, ∀r′ ∈ Nr, b ∈ Br′
recieve θ̃b,k from all regions r′, ∀r′ ∈ Nr, b ∈ Br′
send ϕk and recieve ϕkr′ to and from all regions r′ ∈ R
compute ∆k based on Equations (5)-(10)
if ||fk − f̄k||< ε and ||f̄k − f̄k−1||< ε then

set local convergence to true
if local convergence is true ∀r ∈ R then Ω← 1

end if
return {∆k,Ω}

end function
Communication between neighboring regions occurs accord-
ing to the steps represented in function Communicate which
is invoked after every local solve. At every round k, estimates
of the phase θk, flow fk, local violation ϕk, their correspond-
ing consensus values embodied in ∆k−1 are taken as inputs.
The phase angle estimates are sent to neighbors and are used
to compute fresh estimates of the intermediate values ∆k. The
local load violation ϕr,k is also communicated to all regions
and is used to compute the customized local production target.
A local convergence check follows based on the consensus
estimates of the flow. The global convergence status is denoted
by Ω. In case of local convergence of all regions, the problem
is deemed to have globally converged and Ω is set to 1.

C. Decentralized Optimization with Fixed Maintenance
function DECENTFIXEDOPT(∆,Qr)
k ← 0, ∆0 ← ∆, α← 0
set global convergence value Ω← 0
while Ω!= 1 do
k ← k + 1
{xk,yk, zk,θk,fk,ϕk}←MTOPT(α,Lr(∆k−1),Qr)
{∆k,Ω} ← COMMUNICATE(k,∆k−1,θk,fk,ϕk)

end while
return {xk,yk, zk,∆k}

end function
For solving the joint problem with the maintenance decisions
fixed, we follow the sequence of steps represented in function
DecentFixedOpt. Since maintenance decisions are fixed,
the Lagrangian α is also fixed to 0. A multithreaded local solve
followed by a peer to peer communication forms one round of
the decentralized joint framework. The sequence of computa-
tion followed by communication occurs synchronously among
all regions until global convergence is achieved.

D. Decentralized Optimization with Local Subgradients
function DECENTSGOPT(∆,Qr)
k ← 0, ∆0 ← ∆, α0 ← 0
set global convergence value Ω← 0
while Ω!= 1 do
k ← k + 1, j ← 0, ∆sg ← ∆k−1

while Constraint (4b) not satisfied do
{xj ,yj , zj ,θj ,f j ,ϕj} ← MTOPT(αj ,Lr(∆sg),Qr)
Lj = cTr x

j + dTr y
j + ωTr z

j

αj+1
g = αjg + σj(1−

∑
m∈M

zg,jm ), ∀g ∈ Gr

update σj+1 based on Equation (15)
{xk,yk, zk,θk,fk,ϕk}←{xj ,yj , zj ,θj ,f j ,ϕj}

end while
{∆k,Ω} ← COMMUNICATE(k,∆k−1,θk,fk,ϕk)

end while
return {xk,yk, zk,∆k}

end function
When the maintenance decisions are released, we utilize
the sequence of steps detailed in function DecentSGOpt.
Specifically, the framework outlined in [25] is utilized to
update the Lagrangian value αg which is iteratively updated
using the Equation 14

αj+1
g = αjg + σj(1−

∑
m∈M

zg,jm ), ,∀g ∈ Gr (14)

The step size for the subgradient method is given by Equation
(15) where Lj ,LUB represent the joint operational and main-
tenance objective costs of the jth local subgradient iteration
and its upper bound respectively.

σj =
|LUB − Lj |∑

g∈Gr

[
1−

∑
m∈M

zg,jm
]2 (15)

E. Decentralized Multithreaded Joint Maintenance Algorithm
Based on the four main functions mentioned before, we now

present the decentralized multithreaded (DMT) joint optimiza-
tion solution framework in Algorithm 1. We begin by initializ-
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Algorithm 1 Decentralized Multithreaded(DMT) Algorithm
for Joint CBM and Operations

{x,y, z,∆}FMRC←DECENTFIXEDOPT(∆0,Q
r
FMRC)

{x,y, z,∆}FMBC←DECENTFIXEDOPT(∆FMRC ,Q
r
FMBC)

compute LUB based on {x,y, z}FMBC

{x,y, z,∆}←DECENTSGOPT(∆FMBC ,Q
r
BMBC)

Initialize Local Problem.

PHASE 1: FMRC (Fixed Maintenance Relaxed Commitment)
Fix Maintenance Decisions to Lowest Cost Epoch 

Relax Commitment Variables.

Phase 1?

DecentFixedOpt : Decentralized Optimizer 
with Fixed Maintenance

DecentSGOpt : Decentralized 
Subgradient Optimizer

S
o

lv
e
 W

e
e
k

 1

S
o

lv
e
 W

e
e
k

 2

S
o

lv
e
 W

e
e
k

 M
 

MTOpt: Multithreaded Optimizer

Constraint 4b satisfied?DecentSGOpt?

PHASE 2: FMBC (Fixed Maintenance Binary Commitment)
Fix Maintenance Decisions to Lowest Cost Epoch 

with Binary Commitment Variables.

PHASE 3: BMBC (Binary Maintenance Binary Commitment)
Binary Maintenance and Binary Commitment Variables.

Phase 2?

Communicator : Send/Recieve Consensus Values

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

  

  

Terminate with Optimal Maintenance and Commitment Decisions

Fig. 2: Flowchart depicting the DMT algorithm at region r

ing the intermediate values and delineating the three different
constraint sets Qr

FMRC ,Q
r
FMBC and Qr

BMBC . Set Qr
FMRC

consists of maintenance decisions fixed to the lowest epoch
of the maintenance cost function with relaxed commitment
variables. As a result, Qr

FMRC is convex in nature. Further,
Qr
FMBC represents the constraint set with fixed maintenance

and binary commitment variables. It is easy to see that an
optimal solution of Problem (4) subject to Qr

FMBC is a
feasible solution and also an upper bound of the joint problem
as well. Moreover, a solution to Problem (4) with respect
to Qr

FMBC is purely operations oriented. Finally, Qr
BMBC

represents a constraint set with released maintenance variables
and binary commitment variables.

Initially, Algorithm 1 globally converges with respect to
Qr
FMRC . Next, the resulting intermediate values are used as

input to converge with respect to Qr
FMBC . Based on the

optimal solution obtained in the previous step, an upper bound
of the joint solution is determined that in turn forms the basis
of the subgradient method. Warm starting with the help of the
intermediate values of the previous step, the local solves based
on the subgradient method globally converge to yield the joint
maintenance and operations solution.

A flowchart of the DMT algorithm has been provided in Fig-
ure 2. The flowchart reflects the program logic of Algorithm
1 at a regional level. The process starts with an initialized
local problem, where the maintenance variables would be
fixed, and relaxed commitment decisions would be optimized
using the Phase 1 (Fixed Maintenance Relaxed Commitment)
formulation. The balance of consensus quantities achieved
among neighbor regions in Phase 1 is used to warm start Phase
2 (Fixed Maintenance Binary Commitment), wherein the bi-
nary decisions are obtained with respect to the maintenance
decisions fixed in Phase 1. Upon converging with respect to
Phase 2, an upper bound on the joint CBM and operations
problem is obtained regionally. Next, the subgradient method
is instantiated across all regions which in turn takes advantage
of the consensus achieved thus far. The subgradient method
in Phase 3 is applied iteratively until Constraint (4b) is
locally met to complete one regional iteration. These regional
iterations are performed by all regions until global convergence
is achieved.

While Figure 2 presents the regional program flow, Figure 3
depicts the ADMM based coordination employed in Algorithm
1 based on the sample power network illustrated in Figure 1.
Broadly, there are three main steps concerning the consensus
process. Under Step 1, the regions perform multithreaded,
local computation using the three different phases illustrated in
Figure 2. After local computation, in Step 2, the phase angles
and generation difference values are exchanged with neighbors
and all other regions respectively. In Step 3, the received values
from other regions are utilized to compute the respective ∆
values which are used as an input in the subsequent iteration
of DMT.

V. EXPERIMENTAL RESULTS

For our experiments, we used Gurobi 7.5 [26] for solv-
ing the MIQP problem represented by (3) on each node. All
our experiments were run with 128GB of memory on a state
of the art super computer [27]. We evaluate our model on
the IEEE 3012 bus case with data derived from MATPOWER
library [28]. In order to model the regions, we utilize the region
decompositions as well as the data provided in [9] for the IEEE
3012 bus case for 150 generators. In all our experiments, the
penalty terms ρθ, ρf and ρp are fixed at a value of 1.

A. Computational Architecture
For our experiments, we use an implementation that is based

on the Message Passing Interface (MPI)[29] framework for
decentralized computation and OpenMP for multithreading.
The computational architecture for the sample power network
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Fig. 3: Schematic describing the DMT algorithm in the context of peer-to-peer consensus of phase angle and flow values

depicted in Figure 1 is presented in Figure 4. The architecture
follows a hybrid MPI-OpenMP architecture where each region
is assigned one MPI process and every maintenance epoch
for the regional subproblem is assigned to one OpenMP
thread. Using a distributed memory framework like MPI
for decentralization helps us evaluate the algorithm in an
environment close to the real-world, where each region may
represent various utilities. Our multithreaded decentralized
computational architecture and software framework can be
easily extended to a geographically distributed computational
environment.

Fig. 4: Hybrid MPI OpenMP Computational Architecture for
solving the Joint CBM and Operations problem

B. Degradation Modeling
In order to obtain the sensor data necessary to derive

the maintenance cost of the assets, we rely on vibration
data acquired from a rotating machinery apparatus. Using
this experimental setup, condition monitoring is employed to
estimate the degradation of the rolling element bearing present
in the rotating machine apparatus. We chose roller bearings
because they represent an integral component of every rotating
machinery including generators and different types of turbines
[30], [31]. Vibration signals from the bearings are used to
represent generator degradation. We follow an experimental

setup outlined in [22] that traces the degradation of bearings
from their new state until their failure.

C. Benchmark Models
For all our experiments, we consider a planning horizon

of 12 weeks. To highlight the benefits of our decentralized
multithreaded approach, we resolve the problem under dif-
ferent operational complexity cases. More specifically, the
operational complexity in our setting is quantified by the
commitment decisions per generator per day (CGD). In order
to evaluate the computational benefits of our framework, we
consider four different benchmark models.

1) Centralized Benchmark: Our centralized benchmark
comprises a direct solve of the large scale prob-
lem formulation by Gurobi without any decomposition
schemes. We use the centralized benchmark to rate the
performance of the decentralized algorithm by measur-
ing the relative optimality gap. We let γ denote the total
optimal objective value comprised of operations and
CBM components. γdecent and γc represent the optimal
objective for the decentralized joint method and its
centralized counterpart, respectively. Solving a central-
ized version of the joint problem could be significantly
challenging in itself. In our experiments, the centralized
version did not converge within 6 hours for even the
simplest operational complexity of 4 CGD. Therefore,
our centralized benchmark formulation considers its
relaxation without transmission line constraints. By re-
laxing both the integrality constraints of the commitment
decisions, and the transmission line constraints in the
centralized benchmark, we report the performance of
the other models as a function of a conservative lower
bound for the centralized problem. This means that the
optimality gaps reported by the decentralized solution
may actually be lower. We also note that an exact theo-
retical rate of convergence cannot be provided owing to
the mixed integer and consequently NP-hard nature of
the joint problem as indicated in [17]. We do show that
our method provides a solution quality that consistently
provides an optimality gap of approximately 1%.
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2) Two Stage APMII Benchmark: The Two Stage APMII
Benchmark is based on a modified Benders decomposi-
tion strategy introduced in [8]. The joint formulation is
decomposed into a maintenance-driven master problem
as well as weekly operational subproblems that are
captured through Benders and integer-type cuts. Driven
inherently by a Benders decomposition, this two stage
method represents the current state of the art for solving
the joint CBM and operations problem. Cutting plane
methods (such as this benchmark) are inherently limited
by the complexity of the weekly subproblems in parallel
as well as the growing size of the master problem.

3) Decentralized Single Threaded (DST) Benchmark: This
benchmark is based on the current state-of-the-art de-
centralized methods highlighted in [9], [10], [11]. It
employs a region based decomposition of the power
network topology. An ADMM based technique is used to
iteratively balance the electricity flow among the regions
themselves, which iteratively leads to convergence to the
optimal cost. The DST benchmark employs only a single
thread at every region and as a result suffers significant
performance degradation compared to DMT.

4) Decentralized Solver Driven Multithreading (SMT)
Benchmark: This benchmark augments DST with solver
(i.e. Gurobi) driven multithreading. In this strategy,
we employ the same region driven decomposition with
ADMM based flow balance. However, instead of every
region being given a single thread, multiple threads
are assigned to the optimization solver itself at every
region. Consequently, the mechanics of multithreading
are completely handled by the solver without any added
decomposition strategies from the formulation perspec-
tive. Therefore, such a strategy represents the most
stringent, state-of-the art benchmark for comparing the
decentralized multithreading scheme proposed in this
paper.

D. Computational Results and Observations

TABLE I: Centralized Results Objective Costs (USD 104)

CGD Variables Ops CBM DC Obj
4 100800 641.70 69.80 2.66 714.16
8 201600 626.66 69.81 5.12 701.60

12 403200 624.44 69.84 7.58 701.86

We present our results in terms of the calculated speedup
offered by the DMT algorithm as compared to the correspond-
ing benchmarking method. The speedup is calculated as the
ratio of the solution times incurred by the benchmark with
respect to those of the DMT.
1) Centralized Benchmark Comparison

Table I depicts the operational, CBM, demand curtailment
and total costs of the centralized algorithm with varying
number of CGD values. We use the centralized results for
benchmarking the solution quality of our decentralized, mul-
tithreaded algorithm. Table II depicts the operational (Ops),
CBM, Demand Curtailment (DC) and Total Objective cost
with respect to increasing CGD values with varying number
of regions. Further, Table III shows the computational per-

formance of the decentralized algorithm with respect to the
optimality gap, the computational time incurred as well as the
total number of threads used. Specifically, we show the results
with varying CGD and region cases.

We observe that with increasing complexity of the problem
as indicated by higher CGD values, the computational time
keeps increasing. Further, Table II shows that our decentralized
approach yields highly stable solutions with respect to optimal
maintenance decisions as well as operational decisions. On
the other hand Table III yields numerous interesting insights
concerning the computational performance of the decentral-
ized algorithm. First, we observe that with increasing number
of regions, the time incurred by our algorithm does not
increase by a significant amount. In fact, our approach is
seen to be highly stable with increasing number of regions
thereby highlighting scalability. Moreover, we can also note
that with increasing complexity of the problem denoted by
the CGD value, the time incurred increases approximately in a
linear fashion thereby demonstrating computational efficiency.
Lastly, we observe that in terms of quality of solution as
indicated by the optimality gap, our algorithm retains its
stability with increasing number of regions across varying
CGD values.

Table IV presents the performance in terms of the speedup
offered by DMT in comparison with the centralized method.
We observe that the DMT algorithm consistently solves the
joint problem at least three times as fast as the centralized
counterpart. In fact, it can be seen from Table IV, that the
DMT can be 50 times faster than the conventional centralized
solution method.
2) Two Stage APMII Benchmark Comparison

Table V represents the results relating the Two Stage APMII
benchmark with respect to varying CGD. For these benchmark
experiments, we provided a maximum time limit of 12 hours.
The weekly operational subproblems in our benchmark imple-
mentation were also parallelized using MPI. We note that none
of the experiments pertaining to APMII converged within the
specified time limit. Therefore, we present only the projected
speedup values, which evidently represents the lower bound
on the speedup offered by the DMT algorithm.

Table V clearly demonstrates that the DMT can provide
a speedup by a factor of 22 in certain cases. The speedup
values largely remain stable across increasing number of
regions however, they decrease slightly with increasing CGD
complexity. Even at its slowest, DMT is still approximately at
least twice as fast as the APMII method. Therefore, results in
Table V indicate that the DMT algorithm outperforms state-
of-the-art Two Stage APMII method in all the cases that we
have studied.
3) Decentralized Single Threaded (DST) Benchmark

For comparisons with respect to DST, convergence was very
slow on account of no multithreading support available to
the solver at the regional level. We restricted our benchmark
experiments to the 4 CGD case across all regional decompo-
sitions and the 100 region case with varying computational
complexity depicted in Tables VII, VIII respectively.

Table VII demonstrates that the DMT algorithm can be
faster by up to a factor of 18 with the 4 CGD case. While
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TABLE II: Final Objective Costs (USD 104) of Decentralized Joint CBM and Operations framework

No. Of 4 CGD 8 CGD 12 CGD
Regions Ops CBM DC Obj Ops CBM DC Obj Ops CBM DC Obj

50 641.16 69.82 6.85 717.82 627.89 69.80 6.96 704.65 626.12 69.86 9.96 705.95
60 641.05 69.82 8.79 719.66 627.03 69.83 8.96 705.82 625.70 69.80 8.43 703.94
75 640.32 69.84 10.48 720.65 626.82 69.87 10.72 707.40 626.78 69.81 8.34 704.93
80 638.32 69.83 12.37 720.52 625.13 69.81 12.24 707.18 624.93 69.83 11.27 706.03
90 639.25 69.84 12.52 721.61 623.68 69.82 13.17 706.67 623.64 70.01 18.82 712.47

100 637.93 69.85 14.34 722.12 622.80 69.91 18.05 710.76 620.61 69.88 20.07 710.56

TABLE III: Computational Performance of Decentralized Joint CBM and Operations framework

No. Of No. Of 4 CGD 8 CGD 12 CGD
Regions Threads Opt Gap(%) Time (mins) Opt Gap(%) Time (mins) Opt Gap(%) Time(mins)

50 600 0.51 33.77 0.43 52.39 0.58 122.74
60 720 0.77 44.58 0.59 53.54 0.29 170.89
75 900 0.90 49.8 0.82 219.17 0.43 111.50
80 960 0.89 31.49 0.79 50.98 0.59 56.50
90 1080 1.04 33.24 0.71 35.02 1.51 63.06

100 1200 1.11 41.37 1.2 39.88 1.23 368.98

TABLE IV: Centralized Solution Benchmarking

CGD Time DMT Speedup
(mins) 50 Regions 60 Regions 75 Regions 80 Regions 90 Regions 100 Regions

4 120.85 3.58 2.71 2.43 3.84 3.64 2.92
8 611.43 11.67 11.42 2.79 11.99 17.46 15.33
12 2846.17 23.19 16.66 25.53 50.38 45.14 7.71

TABLE V: Two Stage APMII Benchmark

CGD Convergence Obj (%) Gap from Lower Bound on DMT Speedup
Status1 centralized 50 Regions 60 Regions 75 Regions 80 Regions 90 Regions 100 Regions

4 NC 712.37 0.23 21.32 16.15 14.46 22.86 21.66 17.40
8 NC 699.93 0.22 13.74 113.45 3.29 14.12 20.56 18.06
12 NC 699.62 0.26 5.87 4.21 6.46 12.74 11.42 1.95

TABLE VI: Decentralized Solver Driven Multithreading (SMT) Benchmark

No. Of 4 CGD 8 CGD 12 CGD
Regions Opt Gap (%) Time DMT Opt Gap (%) Time DMT Opt Gap (%) Time DMT

(mins) Speedup (mins) Speedup (mins) Speedup
50 0.38 197.62 5.85 0.31 306.11 5.84 0.29 278.46 2.27
60 0.36 113.87 2.55 0.50 155.77 2.91 0.18 301.56 1.76
75 0.43 181.06 3.64 - 210.05 * - 276.25 *
80 0.41 106.87 3.39 - 244.62 * 0.22 194.45 3.44
90 0.39 83.51 2.51 - 199.73 * - 203.27 *
100 - 182.28 * - 228.17 * - 209.23 *

TABLE VII: DST Benchmark with respect to CGD=4

Regions Opt Gap (%) Time(mins) DMT Speedup
50 0.33 594.32 17.60
60 0.30 943.80 21.17
75 0.46 391.69 7.87
80 0.40 260.46 8.27
90 0.37 197.03 5.93

100 0.50 107.61 2.60

the speedup of DMT decreases with increasing number of
regions, it is still faster than DST at least by a factor of 2.6

TABLE VIII: Performance Comparison of DST with 100
Region Decomposition

CGD Opt Gap (%) Time(mins) DMT Speedup
4 0.50 107.61 2.60
8 0.49 1,967.09 49.33

12 0.39 2,776.94 7.53

for the 100 region case. On the other hand, analysis of results
in Table VIII reveal that DMT can be 50 times faster than

1A convergence status of NC refers to Non Convergence
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DST while still delivering a healthy speedup across all degrees
of complexity. Tables VII and VIII show the degradation of
performance with increasing complexity as well as regions as
evidenced by convergence times stretching up to 48 hours (for
the 12 CGD, 100 regions case).
4) Decentralized Solver Driven Multithreading Benchmark

Table VI represents the results obtained by allowing the
solver to leverage multithreading itself. In this case, in order
to compare with the DMT technique, we allocate 12 threads
to the solver per region while keeping the same experimental
settings. Table VI depicts the optimality gap, the time as
well as the speedup offered by DMT in comparison with the
benchmark method. Rows marked * represent instances where
the solver ran out of memory along with the time taken to
reach the out of memory exception.

Table VI reveals several interesting trends. First, we can see
that even with a state-of-the-art solver like Gurobi, the DMT
method delivers consistent speedup values of up to a factor of
6. Further, out of memory exceptions increase with the rise in
complexity. This can be directly attributed to the increasing
number of binary variables encountered with increasing CGD
values. As a result, more memory is consumed by the multi-
threading schemes on commercial solvers, leading to a poor
space complexity and scalability.

VI. CONCLUSION AND FUTURE WORK

In this paper we develop a decentralized, multithreaded
framework for the joint CBM and operational problem de-
signed for large scale power systems. Our solution involves,
decomposing a given power network topology into multiple
regions and using ADMM to formulate a joint optimiza-
tion model. Such a formulation based on decentralization,
allows preservation of regional data privacy. We solve the
optimization model in a decentralized manner wherein each
region holds its own local subproblem and cooperates with its
neighbors by exchanging flow estimates. We further leverage
multithreading at every regional subproblem to bolster the
computational efficiency of our solution.

We demonstrate the convergence of our algorithm based on
experiments on the large scale IEEE 3012 bus case incorpo-
rating varying degrees of region decompositions. We bench-
mark our methodology against four different computational
paradigms i.e., centralized, two stage cutting plane, decen-
tralized single threaded as well as decentralized solver driven
multithreaded methods. Our results show that our decentral-
ized multithreaded algorithm consistently outperforms all four
benchmarking methods offering as high as 50x speedups with
a stable solution quality as well. The results demonstrate
that our decentralized algorithm can provide good solution
quality, scalability and efficiency with full privacy of sensor
data while being robust to varying problem complexities. As
part of our future work, we intend to explore applications of
the proposed framework into coordination mechanisms for
different participants within deregulated electricity markets,
and computational algorithms that can harness further effi-
ciency through asynchronous model of operation as well as
integrating differential privacy for consensus.
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APPENDIX: IMPLEMENTATION NOTES

The experiments were performed on the Hive supercom-
puter at the Georgia Institute of Technology, Atlanta, GA,
USA. The codebase used in the experiments consisted of
C++ as well as Python based optimization modules that we
developed for Gurobi 7.5. Python 2.7 was used for implemen-
tation including the creation of the joint CBM and operations
optimization models. To improve computational efficiency, the
solver modules were written in C++ with Cython wrappers for
easy and fast access from Python.

There were numerous reasons for adopting a mixed C++ and
Python oriented framework. Support for multithreading frame-
works like OpenMP is largely absent in Python. For solving
the same optimization model, there was a 10x reduction in
compute time in case of a C++ implementation as compared
to a Python based one.
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