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Blockchain Based Decentralized Replay Attack
Detection for Large Scale Power Systems

Paritosh Ramanan∗†,Dan Li† and Nagi Gebraeel†

Abstract—Large scale power systems are comprised of regional
utilities with assets that stream sensor readings in real time. In
order to detect cyberattacks, the globally acquired, real time sensor
data needs to be analyzed in a centralized fashion. However, owing
to operational constraints, such a centralized sharing mechanism
turns out to be a major obstacle. In this paper, we propose a
blockchain based decentralized framework for detecting coordinated
replay attacks with full privacy of sensor data. We develop a
Bayesian inference mechanism employing locally reported attack
probabilities that is tailor made for a blockchain framework. We
compare our framework to a traditional decentralized algorithm
based on the broadcast gossip framework both theoretically as well
as empirically. With the help of experiments on a private Ethereum
blockchain, we show that our approach achieves good detection
quality and significantly outperforms gossip driven approaches in
terms of accuracy, timeliness and scalability.

Index Terms—blockchain, decentralized analytics, data privacy,
power systems, global replay attacks

I. INTRODUCTION

Affordable sensor and communication technologies have given
rise to a growing wave of industrial digitization. The power
industry has been at the forefront of this trend that has culminated
into a digital transformation of the power grid. Such levels of
digitization have led to automation and digital control components
that are collectively referred to as Industrial Control Systems
(ICS). Until recently, ICS used specialized communication and
control protocols that made them relatively immune to cyber-
attacks. However, with increase in Industrial Internet-Of-Things
(IIoT) enabled assets, traditional ICS have gradually become
heavily integrated with standard IT components. Meanwhile, on
the physical level, the grid has evolved into a complex network
with a high degree of interdependency among utility providers
[1], [2]. Such an interdependent, digitized grid has an increased
vulnerability to various kinds of cyberattacks [3]. Tackling these
vulnerabilities requires competing utilities to share sensitive in-
formation with a trusted, centralized entity that can quickly assess
cybersecurity related threats. The process of sharing data with a
centralized entity can be challenging for many utilities due to
the presence of a single point of failure, privacy concerns and
competing market dynamics. Therefore, this paper proposes a
blockchain based, decentralized methodology for detecting the
probability of a global network cyberattack while preserving data
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privacy. Our approach is particularly useful in the context of IIoT
enabled assets that yield real time sensor data to help monitor the
power network.

A significant portion of ICS-focused cyberattacks involve data
manipulation. Often the intent of these attacks is to impact asset
reliability either by accelerating physical or efficiency degradation
or causing sudden breakdowns. The Stuxnet worm has often been
referenced as a classic example of an ICS-focused cyberattack
with data manipulation [4], [5]. Another popular example was the
Aurora Generator Test in which a 2.25 MW substation generator
was destroyed through a planned cyberattack that caused an out-
of-sync closing of protective relays [6], [7]

ICS cyberattacks involving data manipulation have been clas-
sified into three major types, false data injections [8], replay
attacks [9], [10] and covert attacks [11]. This paper considers ICS
replay attacks where a malicious agent replays sensor measure-
ments representing normal operating conditions in order to mask
underlying malicious control actions. We focus on investigating
coordinated, large scale scenarios where an ICS replay attack
is mounted on more than one regional utility provider in the
power network. We refer to such attacks as global network
cyberattacks, or global attacks for short. ICS replay attacks are
difficult to detect. Most of the existing detection algorithms do not
distinguish between replay cyberattacks and naturally occurring
equipment or controller faults.

Current state-of-the-art ICS attack detection methods are in-
tended for individual plant sites and assets only. Utility stakehold-
ers typically rely solely on such localized detection mechanisms
to raise alarms. However, without the knowledge of a rapidly
evolving state of global cyber health, the local mechanism will
only raise an alarm when local assets are either i) under an
attack themselves, or ii) are facing the system repercussions of a
network-wide attack. By the time a local alarm has been raised,
utilities would have lost precious time which could otherwise
be used to localize, diagnose and isolate faults. Moreover, local
detection schemes are inherently based on some underlying
hypothesis test, which means that there is always some level
of unavoidable false alarms. In large scale settings like the one
considered in this paper, detection schemes could significantly
overstate the cyber threat level since false alarm rates increase
with the number of hypotheses tests being conducted [12]. With-
out active collaboration with other stakeholders, utilities might
waste resources trying to diagnose false alarms unnecessarily.
Therefore, a major stumbling block for global attack detection
arises due to the inability of different utility stakeholders to
collaborate and share their local ICS attack detection insights
and alarms. Such roadblocks are inevitable despite the fact that
stakeholders might be equipped with state of the art ICS attack
detection mechanisms.

Consequently, utility stakeholders are left with a tough choice
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between one of two options. Either, they pursue a purely localized
approach with state of the art ICS attack detection, not withstand-
ing its various blinding limitations. Alternatively, they could adopt
a real time sensor and cyber incident data sharing strategy that
relies on a centralized coordinator. The centralized entity would
be in charge of real time processing and analytics of sensor data
being streamed from a large number of assets, while providing
alerts pertaining to the global cyber health of the network as a
whole. Many such centralized data sharing programs have been
pursued in the past. For instance, the U.S. Department of Energy
operates the Cyber Risk Information Sharing Program (CRISP)
[13] which provides utility members with a platform to share
cyber incident/sensor data.

However, such centralized data sharing programs come with
their own set of challenges. First, sharing data through a central-
ized repository presents several privacy risks along with efficiency
and agility issues [14] with respect to sensor data. Second,
in the absence of legal obligation to participate, many critical
utility providers do not pursue membership of data sharing
cooperatives like CRISP due to a variety of business as well
as logistical reasons. Third, programs like CRISP also require
hardware upgrades to existing IT infrastructure and associated
costs as well [13]. Lastly, stakeholders might harbor inherent
distrust in the centralized coordinator itself which is usually
the federal government agencies and/or regulatory bodies. Such
distrust could be due to apprehensions pertaining to unintended
use of sensor data by regulators to detect violations of critical
infrastructure rules and impose penalties.

The unique characteristics of the blockchain could be leveraged
to achieve the best of both worlds: the privacy and agility
of a purely localized approach coupled with the accuracy and
robustness of the centralized method. The blockchain could
allow stakeholders to use state of the art ICS attack detec-
tion mechanisms locally while being able to share their alarm
statistics with all other stakeholders in real time. Further, the
underlying consensus mechanism of the blockchain would be
useful in estimating the global cyber health status by pooling
local alarms in a fully trustworthy and transparent fashion. While
the blockchain provides a robust computational platform for
global aggregation of alarms, the local ICS attack detection
algorithms would eliminate the need to move low level sensor
data ensuring full data privacy. As a result, stakeholders would be
more amenable to participating in such a decentralized mechanism
that provides prompt insights while potentially reducing false
alarm rates drastically. The significant reduction in setup and
maintenance costs due to elimination of a centralized aggregator
[15] is an understated advantage of a blockchain driven approach.

In this paper, we propose the use of a permissioned blockchain
for detecting globally coordinated replay attacks in a decentralized
fashion. Blockchains typically rely on a consensus among multi-
ple mistrusting parties to achieve a consistent global state. As a
result, blockchain based platforms are decentralized in nature and
do not involve a centralized chain of command. Our framework
therefore ensures data privacy by allowing individual utilities to
run their own detection algorithms locally. This leads to full
ownership of cyber incident sensor data with complete privacy.
It also eliminates the associated cost of setting up a trusted,
centralized third party. Moreover, we utilize blockchain driven
Smart Contracts (SC) [16] to estimate the likelihood of a global
replay attack based on alarms and insights aggregated from the

various utilities.
In order to demonstrate the blockchain’s ability to rapidly

generate and propagate global insights, we perform an in depth
comparison with well established information diffusion mech-
anisms like Broadcast Gossip (BG). Gossip protocols are an
important type of diffusion technique aimed at estimating the
global state of a system in a peer-to-peer fashion [17], [18]. As a
result, in this paper, we develop a BG based global replay attack
detection detection framework for benchmarking purposes. We
compare and contrast our blockchain driven approach against the
BG based framework in a theoretical as well as in an empirical
manner. Our results indicate that the blockchain provides a sound
computational platform allowing for global aggregation of local
outputs in a timely, accurate and reliable fashion. The major
contributions of this work are summarized in detail below:
• We develop a decentralized mechanism that relies on

Bayesian inference in order to detect a globally coordinated
replay attack with full regional data privacy.

• We introduce Theorem III.1, specifically geared towards
maintaining computational efficiency of Bayesian inference
on a blockchain platform.

• With the help of Theorem III.1, we design a blockchain
based framework for computing the Global Attack Probabil-
ity (GAP) with only one global multiplication and addition
steps.

• We propose the BG framework as a benchmark and theo-
retically compare its performance with the blockchain based
approach with the help of Theorem V.1.

• We implement our framework on an Ethereum based pri-
vate blockchain network to demonstrate its scalability and
applicability for varying degrees of cyber threat parameters.

Our results conclusively show that the blockchain driven frame-
work is vastly superior to conventional, state-of-the-art informa-
tion diffusion paradigms, like BG, both in terms of computational
performance as well as accuracy of results.

II. RELATED WORK

ICSs are a special class of information systems, involving
interaction between information technology (IT) and operational
technology (OT) [19]. Like all information systems, cyberattacks
also threaten many ICSs involved in applications such as water
supply, manufacturing, power systems, and energy [20]–[22].
Attacks like DoS, DDoS, phishing, spoofing and eavesdropping
that target generic IT systems can also target ICSs but they can
often be effectively detected and isolated by monitoring network
traffic [23]–[25]. On the other hand, data attacks are a more signif-
icant threat to ICSs due to their interaction between information,
communication and the underlying physical processes [26] that
could potentially lead to critical infrastructure damage.

A. Data Manipulation Attack Detection
In data manipulation attacks, attackers manipulate con-

troller/sensor data or even data at rest in order to damage critical
assets through malicious control actions and incorrect state esti-
mations leading to degraded asset performance. It has been shown
that data attacks can be designed to bypass basic verification
methods relying on Cyclic Redundancy Check (CRC), User
Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). [27], [28].

Numerous model-based detection frameworks have been pro-
posed as an added layer of protection for ICS attacks involving
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data manipulation [8], [10], [29]–[39]. Most detection algorithms
rely on differences between actual measurements and those esti-
mated by a model of the physical system. Differences between
the estimated (or predicted) and observed measurements or states
(i.e., residuals) can be used to detect possible cyberattacks. In
most cases, a sequential goodness-of-fit testing procedure serves
as the basis for detecting the attack. However, these approaches
have been shown to be inefficient in detecting replay attacks,
primarily because the observed measurements (replayed data)
often match measurements estimated by the system’s model.

Replay attacks can be detected based on several types of
strategies. The first type is watermarking the control actions [10],
[34], [40]–[43]. This type of strategy is based on the assumption
that the operator can add watermarks (a small bias or noise)
to the control actions, which is unknown to the attacker. The
second type is observer-based anomaly detection [44], [45]. This
type of strategy is based on the assumption that some of the
sensors can be protected or immune from manipulation. The local
attack detection algorithm we adopt in this paper [45] belongs to
the second type, however, it does not assume the operators can
proactively protect the sensors, but that some certain types of
sensors are immune to manipulation. In fact, any replay attack
detection technique can be adapted to our global framework,
as long as the detection algorithm can be used to obtain the
probability of attack. The advantage of adopting the method in
[45] is that it detects the attack based on statistical inference,
which naturally outputs the probability of attack.

B. Blockchain Driven Methods for Security and Privacy
The use of blockchain has been proposed as a gateway to

ensuring data privacy and security in a wide variety of application
areas. A lightweight, private blockchain paradigm for enhancing
the security and privacy of IIoT driven manufacturing platforms
has been proposed in [46]. Further, [47] provides a secure,
permissioned blockchain based approach for energy trading be-
tween electric vehicles and the grid. Use of blockchain has been
considered in power systems in numerous works in the recent
past. Blockchains have been proposed as a means to establish
a decentralized, secure technique for transactive energy [48] as
well as to handle and trace back energy losses in microgrids
that incorporate PV nodes [49]. Blockchain driven approaches
are also being considered as the perfect computational platforms
for collaboratively detecting attacks and anomalies on a global
scale with full data privacy [50]. However, despite its immense
potential, efforts exploring the use of the blockchain towards
detecting globally coordinated replay attacks on power network
ICSs largely remains understated.

C. Operational Dynamics of Blockchains
The operational dynamics of a blockchain implementation are

dictated by their individual application or use case. In cases where
no assumptions can be made about the identity or intent of the par-
ticipating entities, a permissionless blockchain implementation is
the norm [51]. On the other hand, in applications where the parties
are well-established real-world entities which elicit a fair degree
of trust, a permissioned blockchain implementation is preferred
[52]. The major distinguishing factor between a permissioned and
a permissionless blockchain is the underlying consensus protocol
which ensures a consistent global state among all parties. Per-
missionless blockchain implementations involve computationally
intensive consensus protocols that are designed to operate without

any assumption of trust among the mistrusting parties. Popular
consensus mechanisms for permissionless blockchains include
Proof-of-Work (PoW), Proof-of-Stake (PoS), delegated Proof-
of-Stake (dPoS), Proof-of-ElapsedTime (PoET) [52]. However,
permissioned blockchains place an emphasis on high perfor-
mance involving consensus protocols that leverage the identity
of participating entities. In permissioned blockchains, consensus
protocols are primarily a fault-tolerant means of achieving global
consistency by inducing a tamper proof record [52].

D. Consensus Mechanisms for Permissioned Blockchains
Consensus mechanisms in permissioned settings are usually

dominated by Proof-of-Authority (PoA) based algorithms. Rather
than relying on solutions to complex mathematical-based chal-
lenges like PoW, PoA relies on the authority of real-world entities
part of a permissioned ledger. A majority of the authorities have
to achieve consensus before a block is permanently added to the
chain. As a result, PoA improves security without relying on
computational challenges, since an attacker must hack a majority
of authorities in order to rescind all transactions [53]. PoA chains
are also known to have low latency, deterministic block creation
process, as well as faster block creation times which are more
important in a permissioned setting [52], [53]. PoA is more suited
to a consortium or permissioned settings due to its security,
easier maintenance as well as accountability of the authorities
themselves [53]. Therefore, in this paper, we adopt a permissioned
blockchain driven approach since our problem setting involves a
consortium of real-world entities such as utility stakeholders with
their own ICSs desirous of detecting a global replay attack.

Most PoA algorithms are based on the concept of Byzantine
fault tolerance (BFT) [51], [52]. However, non-BFT algorithms
like Raft [52] have also been proposed and form an integral part
of many permissioned blockchain implementations such as Corda
and GoQuorum. The class of BFT driven PoA mechanisms can
in turn be divided into two categories: classical and modern.
The classical PoA category consists of protocols such as Istanbul
BFT [54] (offered in Hyperledger Besu, and GoQuorum) with
the consistency of the ledger as the priority. The modern category
consists of a new family of BFT protocols such as Clique (offered
in Hyperledger Besu, Ethereum, OpenEthereum and GoQuorum)
and Aura [51] (offered in OpenEthereum). The modern PoA
protocols emphasize better performance (i.e. low latency and
block creation times) over consistency.

We summarize the characteristic features of widely used con-
sensus protocols i.e. Clique, IBFT, Aura and Raft with the help of
Table I. Table I provides a qualitative comparative analysis of each
protocol. For an in-depth discussion of the characteristic features
presented in Table I, we refer the reader to Appendix VII. Due to
its low latency, high decentralization potential, increased degree
of fault tolerance as well as the capability to achieve eventual
consistency, we choose the Clique consensus protocol for our
experiments.

III. PROBLEM FORMULATION

We primarily use the blockchain as a computational platform
for aggregating outputs from local replay attack detection algo-
rithms. In developing our blockchain based global attack detection
framework, we consider a power network that is divided topolog-
ically into a set of distinct regions denoted by R = {1, 2, 3 . . . n}.
Each region can be thought of as a utility provider with multiple
power plants. A blockchain architecture is used to assess the
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TABLE I: Comparative Analysis of State-of-the-art Consensus Protocols for Permissioned Blockchains

protocol PoA type validators decentralization fault tolerance consistency block latency

Clique modern BFT at least 1 high < 1/2 validators
eventual

consistency
low; only 1 message

round required

IBFT classical BFT at least 4 medium < 1/3 validators
consistent but
stalling likely

high; 3 message
rounds required

Aura modern BFT at least 1 high < 1/2 validators
no consistency

guarantees
medium; 2 message

rounds required

Raft non BFT
exactly 1 leader,
multiple verifiers,

many learners

low; restricted
to leader < 1/2 crash faults

consistent
(assumes no forking)

low; only leader
can mint blocks

global state of the entire network based on insights that are
aggregated in a decentralized, privacy preserving manner. The
aggregation determines the overall probability of a global network
attack.

We first consider a single region i comprised of p generators
monitored and controlled by a single ICS where the state of each
generator can be represented by m variables. We assume that the
dynamics of this system of generators can be characterized by a
linear time-invariant (LTI) model at time t described by Equations
(1), (2).

xt+1 = Axt +But + vt, (1)
yt = Cxt + wt, (2)

In Equations (1), (2), xt ∈ Rmp represents the unobserved state
of the system, ut ∈ Rmp is the control action while yt ∈ Rmp
denotes the sensor measurements, which are assumed to be noisy
realizations of the state. A ∈ Rmp×mp is the state transition
matrix and represents the system dynamics. B ∈ Rmp×mp is
the input matrix and represents how the control action impacts
the system state. C is the measurement matrix and represents
the relationship between the measurements yt and the state xt.
vt ∈ Rmp and wt ∈ Rmp represent process and measurement
noise at time t, respectively. Such a type of modeling framework
has also been used extensively in prior art [10], [11], [30].

In this setting, the Kalman filter is known to be the optimal
state estimator [55]. The residuals rt are defined as the differences
between the actual measurements yt and the predicted measure-
ments Cx̂t|t−1 as estimated by the Kalman filter. The control
action ut is calculated using a linear-quadratic Gaussian (LQG)
controller, which is the optimal controller under the LTI setting
[56]. The Kalman filter and the LQG controller are estimated
based on Equations (3)-(6).

x̂t|t−1 = Ax̂t−1|t−1 +But−1, (3)
x̂t|t = x̂t|t−1 +Krt, (4)
rt = yt − Cx̂t|t−1, (5)

ut = Lx̂t|t. (6)

In Equation (6), L = −(BTSB + U)−1BTSA where S is the
solution to the Ricatti equation [56] denoted by Equation (7).

S = ATSA+W −ATSB(BTSB + U)−1BTSA (7)

In Equation (7), W,U ∈ Rmp×mp are positive semidefinite

matrices used by the LQG controller to minimize its objective
function J = E[xTt Wxt + uTt Uut] based on state variables and
control actions, respectively. Therefore, W,U primarily denote
the degree of aggression while regulating the state variables.

A. Threat Model
As mentioned in Section I, in a replay attack, the attacker gains

access to both sensors and controller. This can be achieved by
intruding into the ICS through its supervisory computers or other
connected hardware. After the access is obtained, the attack is
implemented in two stages. The first stage involves eavesdrop-
ping and recording of sensor measurements {yrt } without data
manipulation, which can be denoted by

yrt = yt. (8)

The second stage is the manipulation of the control actions uk by
injecting bias or noise, while replaying the sensor measurements
yrt in replacement of yt. The second stage is represented by
Equations (9) and (10)

u′t = ut + at, (9)
y′t = yrt−δ, (10)

where u′t and y′t are the control action and measurements under
attack, respectively, at is the bias or noise injected at time t, and
δ is the time difference between the onset of the two stages of
the replay attack. In this way, the system state is altered due to
Equation (9), but the attack is hard to detect by monitoring the
sensor data due to Equation (10).

In our framework, we assume that the adversary is outside
the blockchain and is solely focused on injecting data into a
utility stakeholder’s ICS in order to carry out a replay attack.
In our framework, the stakeholders themselves trust each other
and share the insights from their local ICS detection algorithms
with each other through the permissioned blockchain. Further-
more, we also assume that an attacker targets at most less
than 50% of the regional utility stakeholders participating in
the consortium. Therefore, based on the PoA protocol [51], we
can state that an attacker controlling hacked authorities cannot
revert transactions and attack the network. We assume that all
regions are equally likely to experience a replay attack which
are mutually independent. Independence is assumed here for
mathematical convenience. More importantly, a global network
attack is assumed to occur when at least two regions report local
attacks.
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Given our threat model, the problem formulation can be viewed
as having two components, a local and a global component. The
local component represents regional plants that belong to a single
utility provider. We assume that each region executes the local
algorithms aimed at detecting replay attacks on their plants’ ICS.
We refer to the local component as the regional detection model.
The global component, i.e. the network detection model, concerns
the detection of a coordinated global attack at the network level.

B. Regional Detection Model
As shown in [45], replay attacks can be detected by monitoring

the covariance matrix of the residuals rt. Using this approach,
let σi be a random variable representing the probability of an
alarm triggered by region i. That is, σi = 1 if a replay attack
is detected and σi = 0 otherwise. We define σ̂i as the ground
truth that represents whether a replay attack is indeed underway.
There are two classic errors that can occur in this setting. Type-
I error, α, represents the probability of a false alarm, i.e., the
algorithm triggers an alarm when there is no attack. The Type-II
error, β, represents the probability of a false negative, i.e., where
the detection algorithm fails to detect a true replay attack. These
errors can be defined more formally in terms of a region i as
follows

αi = Pr(σi = 1|σ̂i = 0), (11)

βi = Pr(σi = 0|σ̂i = 1). (12)

In Equations (11), (12) σ̂i = 1 in the event the system is truly
under a replay attack whereas σ̂i = 0 otherwise.

C. Network Detection Model
Consider a power network comprised of n regions each re-

porting an alarm based on their local belief of an attack. Recall
that a global network attack is triggered if there are two or more
distinct regional alarms, i.e. at least two regions detect an attack.
Let the set S = {s0, s1 . . . sn} denote all the scenarios that
represent no global network attack, where s0 ∈ {0}n indicates
a scenario where no regional alarms have been triggered and
si ∈ {0, 1}n denotes scenarios where only one region i triggers
an alarm. Consequently, for a scenario sk, k > 0, only its
kth element skk = 1. Next, let σ ∈ {0, 1}n = [σ1, σ2 . . . σn]
be a vector of random variables representing regional alarm
events. Given σ, the probability of no global network attack
can be expressed as Pr(S|σ). Similarly, Pr(σ|sk) defines the
probability of observing σ given a scenario sk Since regional
attacks are assumed to be independent, the following expressions
hold true: (13)-(16).

Pr(sk) =

n∏
i=1

Pr(sik), (13)

Pr(σ|sk) =

n∏
i=1

Pr(σi|sik), (14)

Pr(S|σ) =
∑
sk∈S

Pr(σ|sk)Pr(sk)

Pr(σ)
, (15)

Pr(σ) = Pr(σ1 ∩ σ2 . . . ∩ σn) =

n∏
i=1

Pr(σi). (16)

The occurrence of the event denoted by sik is only relevant in
the context of the ground truth σ̂i. Therefore, we can state that
Pr(sik) = Pr(σ̂i = sik), where Pr(σ̂i = sik) reflects the prior

probability of the existing ground truth σ̂i being equal to sik.
Consequentially, substituting Equations (13) and (14) in (15), we
obtain the relation represented by (17).∑
sk∈S

Pr(σ|sk)Pr(sk) =
∑
sk∈S

n∏
i=1

Pr(σi|σ̂i = sik)Pr(σ̂i = sik).

(17)
We also know that

Pr(σi) = Pr(σi|σ̂i = 0)Pr(σ̂i = 0)+Pr(σi|σ̂i = 1)Pr(σ̂i = 1).
(18)

We note that Pr(σi) and Pr(σi|sik)Pr(σ̂i = sik) in Equations
(17), (18), respectively, can be computed locally allowing us to
propose the the following theorem.

Theorem III.1. The probability of no global attack denoted by
Pr(S|σ) is governed by the equality,

Pr(S|σ) =
( n∏
i=1

ai
Pr(σi)

)(
1 +

n∑
i=1

bi
ai

)
where,

ai = Pr(σi|σ̂i = 0)Pr(σ̂i = 0), bi = Pr(σi|σ̂i = 1)Pr(σ̂i = 1)

Proof. Based on our assumptions, we derive the relations repre-
sented by Equations (19), (20).

Pr(σ|s0)Pr(s0) =

n∏
i=1

Pr(σi|σ̂i = 0)Pr(σ̂i = 0), (19)

Pr(σ|sk)Pr(sk) =

n∏
i=1

Pr(σi|σ̂i = sik)Pr(σ̂i = sik). (20)

Dividing Equations (20) with (19), we get

ψk =
Pr(σ|sk)Pr(sk)

Pr(σ|s0)Pr(s0)
=

n∏
i=1

Pr(σi|σ̂i = sik)Pr(σ̂i = sik)

Pr(σi|σ̂i = 0)Pr(σ̂i = 0)
.

(21)
Since, sik = 1 only when i = k, we can rewrite Equation (21) as

ψk =
[ n∏
i=1
i 6=k

Pr(σi|σ̂i = 0)Pr(σ̂i = 0)

Pr(σi|σ̂i = 0)Pr(σ̂i = 0)

]Pr(σk|σ̂k = 1)Pr(σ̂k = 1)

Pr(σk|σ̂k = 0)Pr(σ̂k = 0)
.

(22)
Equations (21), (22) imply that,

Pr(σ|sk)Pr(sk) = Pr(σ|s0)Pr(s0)
bk
ak
, ∀k > 0. (23)

Recall from Equation 17, that

Pr(σ|s0)Pr(s0) =

n∏
i=1

Pr(σi|σ̂i = 0)Pr(σ̂i = 0) =

n∏
i=1

ai.

(24)
Since ak, bk can be purely computed by region k we obtain
Equation (25) by combining Equations (23) and (24)∑

sk∈S
Pr(σ|sk)Pr(sk) =

( n∏
i=1

ai

)(
1 +

n∑
i=1

bi
ai

)
. (25)

Based on Equations (25) and (16), we obtain

Pr(S|σ) =

∑
sk∈S

Pr(σ|sk)Pr(sk)

n∏
i=1

Pr(σi)
=
( n∏
i=1

ai
Pr(σi)

)(
1+

n∑
i=1

bi
ai

)
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.

The entities ai, bi can be computed in a simplified manner as
follows

ai = Pr(σi, σ̂i = 0) = Pr(σi|σ̂i = 0)Pr(σ̂i = 0), (26)

bi = Pr(σi, σ̂i = 1) = Pr(σi|σ̂i = 1)Pr(σ̂i = 1). (27)

Moreover, the prior distribution can be updated in a purely local
fashion using:

Pr(σ̂i = 0) =
ai

ai + bi
, (28)

Pr(σ̂i = 1) =
bi

ai + bi
. (29)

Theorem III.1 indicates that the global attack probability can be
computed through one global multiplication and addition of the
two terms, ai

Pr(σi) ,
bi
ai

. We therefore incur significant computa-
tional benefits especially on a blockchain based framework where
computation is expensive. Figure 1 represents the system architec-
ture for our blockchain based global attack detection mechanism.
At the lowest level, we have plants and their associated sensors
feeding data into controllers that are directly managed by the
Industrial Control System (ICS). The ICS stores the data in a
local data store on which the regional detection algorithm is
applied. Insights from the regional detection model are shared
using Theorem III.1 on the blockchain. Every regional utility
stakeholder utilizes the latest available information on the ledger
to be able to obtain knowledge of a global replay attack.

IV. BLOCKCHAIN BASED FRAMEWORK FOR GLOBAL REPLAY
ATTACK DETECTION

The introduction of Smart Contracts (SCs) [16], [57] have
been an important addition to the blockchain paradigm. An SC
is typically a snippet of code that resides on the blockchain.
It can contain complex program logic on the blockchain and
can be invoked by any party having access to the blockchain.
Once invoked, an SC is self-triggering and proceeds to alter the
state of the ledger with the help of the underlying consensus
protocol. As a result, an SC can be used for executing business
logic through consensus among mistrusting parties paving the
way for a decentralized application. Therefore, due to their
versatility, blockchain driven Smart Contracts (SC) provide an
ideal environment for the Network Detection model in a fully
decentralized fashion.

Solidity 1 is a popular SC oriented programming language that
can be leveraged for developing highly versatile decentralized
applications. A key constraint of languages like Solidity is the
lack of floating point arithmetic operations 2. This is done to
primarily reduce the computational burden on the underlying
consensus protocols. As a result, one has to define a precision
conversion factor for converting floating point values to integers
before feeding them as inputs to the SC on the front end side.
Obviously, the choice of the precision factor could have a wide
impact on the detection accuracy of a global replay attack. In
this section, we propose a Solidity based Smart Contract(SC)
design that embodies our global replay attack detection paradigm
discussed in Section III.

1https://github.com/ethereum/solidity
2https://solidity.readthedocs.io/en/v0.5.3/types.html#fixed-point-numbers

A. Smart Contract Design
Table II, III depict the attributes and functions that form an

integral part of the SC design for our framework. In Table II,
the precision factor is denoted by D and arrays aOPs, bOa
store the integer values Dai

Pr(σi) ,
Dbi
ai

of all regions respectively.
In Table III, the functions updateData, aggregateV alues can
be asynchronously invoked by any region for updating the SC
with their local values and obtaining the corresponding global
aggregates respectively.

TABLE II: Solidity based Smart Contract Attributes

Attribute Type Description
D uint256 Precision for floating point conversion.
n uint The total number of regions i.e. |R|

aOPs[] uint256 Array for storing Dai
Pr(σi) ,∀i ∈ R

bOa[] uint256 Array for storing Dbi
ai
,∀i ∈ R

TABLE III: Solidity based Smart Contract Function

Function Invoker Description
updateData Region i sets aOPs[i], bOa[i]

aggregateValues Region i returns
n∏
j=1

aOPs[i],
n∑
j=1

bOa[i]

B. Blockchain Based Global Attack Detection Algorithm
Algorithm 1 presents the details of blockchain based global re-

play attack detection which is executed in a decentralized fashion.
We assume an off chain interaction informs all the regions about
the SC address, total number of regions as well as the precision
factor. Every region initially determines its corresponding local
alarm value σi. Let xi = ai

Pr(σi) , yi = bi
ai

represent the local sta-
tistical values which are converted to integers using the precision
factor D and pushed to the SC by invoking SC.updateData. Any
region can asynchronously invoke SC.aggregateV alues in order

to obtain xb =
n∏
i=1

Dxi and yb =
n∑
i=1

Dyi. A global estimate of

no attack can then be computed locally using Theorem III.1. A
complement of the result can be used to infer the presence of a
global attack. At each epoch, the prior distribution pertaining to
local alarm values gets updated locally.

Algorithm 1 Decentralized blockchain based algorithm

owner region deploys and initializes SC on blockchain
for i=1,2,3. . . n in parallel do

initialize D,n and obtain SC address.
while true do

determine the message σi

compute Pr(σi) using Equation (18)
compute xi, yi using Equations (26),(27)
invoke SC.updateData

(
Dxi, Dyi, i

)
xb, yb ← SC.aggregateV alues()
using Theorem III.1 compute 1− Pr(S|σ) such that,

Pr(S|σ) = xb(D + yb)/D(n+1)

update prior distribution using Equations (28),(29)
end while

end for

https://github.com/ethereum/solidity
https://solidity.readthedocs.io/en/v0.5.3/types.html#fixed-point-numbers
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Fig. 1: System Architecture for blockchain based global replay attack detection

V. PERFORMANCE COMPARISON OF BLOCKCHAIN AND BG
DRIVEN APPROACHES

For developing a decentralized global replay attack detection,
we assume the existence of an underlying connectivity graph
that represents the system level interconnection among utilities
[1]. In this graph, each vertex represents a utility or region. An
edge exists if there is a shared transmission line between the
corresponding utilities. Without a central aggregator, a diffusion
mechanism must take place over the existing connectivity graph
in order to detect globally coordinated replay attacks. Therefore,
we develop a novel diffusion algorithm based on state-of-the-art
BG as a benchmark strategy for our blockchain based approach
[18]. BG can be used to compute the global average of values
held by the vertices of the connectivity graph. BG avoids the
computational bottlenecks found in other gossip protocols while
converging to the global average in expectation [18]. Being inher-
ently decentralized, consensus driven and peer-to-peer in nature,
BG forms the ideal benchmark for comparing the performance of
a blockchain driven framework.

A. BG based Reformulation of Global Attack Detection
Since the total number of agents in the system is known, BG

can be used to estimate the global sum and product terms present
in Theorem III.1 as well. Recall xi, yi, ∀i ∈ R from Algorithm 1.
For computing the sum y, the reformulation is trivial and consists

of estimating the global sum from the global average
n∑
k=1

yi/n.

In order to use BG to calculate the product x =
n∏
i=1

xi, we

reformulate x = eu, where u =
n∑
i=1

ui, and ui = log xi. We

leverage the BG protocol to compute
n∑
i=1

ui/n which can be used

to estimate x in a purely peer-to-peer fashion.

B. Performance Analysis
We wish to compare and contrast the precision factor based

error introduced in the blockchain framework against the expected
asymptotic error in a BG driven framework. As a result, we
propose Theorem V.1 which helps characterize the conditions
favorable for the BG to remain competitive with our blockchain
framework. For Theorem V.1, we consider a set of agents con-
nected by graph G with Laplacian L. For our analysis of Theorem
V.1, we assume a constant value of β across all regions. Further,
we let λn−2(L) and λ1(L) denote the second smallest and the
largest eigenvalues of L where γ ∈ (0, 1) represents the mixing
parameter [18]. The mixing parameter dictates the contribution
of values recieved from each neighbor during the BG protocol
at each vertex [18]. As illustrated in [18], the expected BG error

bound for computing the average z̄ =
n∑
i=1

zi/n where zi is the

local value held by agent i ∈ {1, 2, . . . n} is given by

lim
t→∞

∆(zt)2 ≤ (∆z0)2(1− r), where r =
γ λn−2

λ1

1− 1−γ
2n λ1

. (30)

Theorem V.1. Let ∆pb,∆p
∞
g denote the precision error induced

in a blockchain framework and the limiting asymptotic mean
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square error from BG respectively. ∆p∞g ≤ ∆pb if

D ≤ 1

β

√
n(1− r)

[(
∆x0

x

)2

+
(

∆y0

1+y

)2]
where x0, y0 represent the initial error of x, y respectively in case
of BG.

Proof. We consider the error on p = x · (1 + y) to obtain

∆p2 = p2
[(∆x

x

)2

+
( ∆y

1 + y

)2]
. (31)

Analyzing error on x, y, we have

∆x2 = |x|2
[ n∑
i=1

(∆xi
xi

)2]
, ∆y2 =

n∑
i=1

(∆yi)
2. (32)

With a precision factor of D, we know that ∆xi,∆yi ≤ 1
D

leading to the relations(∆x

x

)2

≤ 1

D2

n∑
i=1

( 1

xi

)2

,
( ∆y

1 + y

)2

≤
[ n

(1 + y)D

]2
. (33)

We know that,

ai = Pr(σi|si = 0)Pr(si = 0) =⇒ xi = Pr(si = 0|σi),
(34)

where,

xi =

{
β, when σi = 1

1− α, when σi = 0

Let pb denote the global probability of no attack obtained with
a blockchain based framework with precision factor D. Since
β, α ≈ 0 and 1

xi
≤ 1

β , we obtain(∆pb
pb

)2

≤ 1

D2

[ n
β2

+
( n

1 + y

)2]
. (35)

Since 1
(1+y)2 ≤ 1, we can safely assume that 1

(1+y)2 ∈ O( 1
nβ2 )

thereby leading to the following error estimate for the blockchain
based algorithm (∆pb

pb

)2

≤
( n
D

)2

· 1

nβ2
. (36)

On the other hand for the BG algorithm recall that x = eu, where

u =
n∑
i=1

ui, ui = log xi. Based on error analysis we obtain

(∆x)2 =
(∂x
∂u

∆u
)2

=⇒
(∆x

x

)2

= ∆u2. (37)

Let pg denote the global probability of no attack obtained from
a BG based framework. We can therefore say that,(∆pg

pg

)2

≤ ∆u2 +
( ∆y

1 + y

)2

(38)

Substituting the expected upper bound on error terms ∆u2,∆y2

from Equation (30), we obtain(∆pg
pg

)2

≤ n2(1− r)
[
(∆u0)2 +

( ∆y0

1 + y

)2]
(39)

Based on Equations (36) and (39), for the BG algorithm to com-
pletely outperform the blockchain based method, the following
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Fig. 2: Computational Scaling Study comparing Simulation Time
against varying number of total regions for IEEE 3012 bus case

condition must be satisfied

n2(1− r)
[
(∆u0)2 +

( ∆y0

1 + y

)2]
≤
(∆pb
pb

)2

≤
( n
D

)2

· 1

nβ2
.

(40)
Since we know that ∆u0 = x0

x we can state that

D ≤ 1

β

√
n(1− r)

[(
∆x0

x

)2

+
(

∆y0

1+y

)2] . (41)

Theorem V.1 shows us that the precision factor D has an
inverse relation to the initial BG error, ∆x0/x + ∆y2

0/y. It can
also be noted that r(γ) is a monotonously increasing function
with 0 ≤ r(γ) ≤ λn−2

λ1
[18]. Therefore, Theorem V.1 indicates a

direct relationship between the precision factor D and the mixing
parameter γ as well as the eigenvalue ratio denoted by λn−2

λ1
.

Based on observations from Theorem V.1, we can postulate
several constraints on BG in order for it to match the detection
quality of a blockchain driven approach with a high precision
factor D. First, BG must preferably start with low initial error
with respect to the global values of x, y. Second, since γ → 1 is
more favorable for BG, only scant perturbation of the local esti-
mate can be allowed when new neighbor messages are received.
Therefore, a BG framework cannot afford a drastic change in the
overall network mean, making a low initial error state on all nodes
imperative to its success. Lastly, for good detection quality, the
BG prefers a highly connected underlying graph as indicated by
the requirement for λn−2

λ1
→ 1.

The prerequisite constraints for the BG to outperform the
blockchain present significant implementation challenges espe-
cially in a large scale power network with rapidly evolving global
cyber health status. As a result, a blockchain driven framework is
a highly favorable option for delivering an accurate, reliable and
timely estimate of the global attack probability.

VI. EXPERIMENTAL RESULTS

Our blockchain results utilize a Geth3 based, Ethereum pri-
vate blockchain network orchestrated on a 2.7 GHz Intel Xeon

3https://geth.ethereum.org
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Fig. 3: 16 region decomposition of IEEE 3012 bus case : Global Attack Probability detection with varying number of regions under
attack
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(c) 25 gossip rounds per epoch
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(d) 50 gossip rounds per epoch

Fig. 4: 40 region decomposition of IEEE 3012 bus case : Comparison with BG with varying local gossip rounds with fixed 2 regions
under attack
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(b) At most 4 regions under attack
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Fig. 5: 40 region decomposition of IEEE 3012 bus case : Comparison with BG with varying number of regions under attack with
local gossip rounds fixed at 50

processor with 128 cores. We used Solidity 5.2 to compile the
SC and utilized multithreading to simulate the region processes.
Each region is assigned one thread each for the Ethereum node
and the regional detection model respectively. There is no global
synchronization among the regional processes. We used the IEEE
3012 bus transmission network to simulate a large scale transmis-
sion network consisting of 150 generators. In our experiments,
we set α = 0.005 for the regional detection component for all
regions. For our blockchain framework, we use a precision factor
value of D = 106. Further, we employ the Proof-of-Authority
(PoA) consensus protocol 4 given its suitability for power system
applications wherein utilities can act as the authorities. PoA
eliminates computationally intensive consensus by shifting the
onus of trust to the authorities themselves. Our simulations occur
at discrete epochs at which local alarms are reported. In all our

4https://wiki.parity.io/Proof-of-Authority-Chains

experiments the simulation horizon is 200 epochs.
We leverage the Clique Proof-of-Authority consensus protocol

which offers numerous benefits from the security perspective.
First, Clique relies on the authority of real world entities that are
a part of a permissioned ledger. Based on Table I, a majority
(i.e. 50%) of the authorities have to reach consensus before
a block is permanently added to the chain. Moreover, Clique
can also tolerate an adversarial attack of at most 50% of the
validators/authorities. As a result, PoA improves security without
relying on computational challenges, since an attacker must hack
a majority of authorities in order to rescind all transactions.
PoA chains are also known to have low latency, deterministic
block creation process as well as faster block creation times
which are more important in a permissioned setting. PoA is more
suited to consortium or permissioned settings due to its security,
easier maintenance as well as accountability of the authorities

https://wiki.parity.io/Proof-of-Authority-Chains
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themselves. Therefore, in this paper, we adopt a permissioned
blockchain driven approach since our problem setting involves a
consortium of real world entities such as utility stakeholders with
their own ICSs desirous of detecting global replay attacks.

A. Computational Performance and Accuracy
We evaluate the computational performance of our blockchain

framework by considering varied regional decompositions of the
IEEE 3012 bus case. Figure 2 presents the incurred time for sim-
ulation with varying number of total regions for our blockchain
based framework. We observe that a lesser number of regions
takes longer to simulate in general. We also notice that the overall
simulation time decreases sharply after 4 regions, decreasing
gradually and eventually settling at approximately 500secs. This
is because as a result of the Clique 5 PoA consensus protocol,
lower values of n contribute to a high overall simulation time due
to increased block generation time [51]. However, increasing n,
results in lesser block generation time but more communication
burden. Therefore, we observe that the simulation time eventually
stabilizing around a fixed value even as n is increased.

Figure 3 presents results pertaining to experiments involving
varied number of regions under attack along with varying degree
of attack magnitude. We observe that the framework is robust
to varying attack magnitudes and is able to qualitatively detect
attacks regardless of attack magnitude. Further, the results also
indicate that the framework performs consistently with varying
number of regions under attack as well.

B. Evaluation against BG
Figures 4 and 5 depict box and line plots against discrete

simulation epochs corresponding to the BG and the blockchain
respectively for a magnitude of 20. Each box plot presents the
spectrum of global probability values recorded by all region
across 100 repeated trials of BG. Similarly, the line plot repre-
sents the global probability values determined by the blockchain
framework.

Figure 4 compares the performance of the blockchain version
with a BG based scheme with varying number of gossip rounds
for each simulation epoch by enforcing two regional attacks. We
observe that the blockchain based framework detects a global
attack faster than the BG by a margin of 30 epochs. Moreover
an increasing number of BG rounds per epoch leads to a sharp
decrease in the mean, median and the variance of the global attack
probability across all regions. Figure 4 demonstrates that despite
50 synchronous gossip rounds per epoch, a global attack detection
cannot be successfully disseminated among all regions in BG.

Figure 5 compares the performance of the blockchain based
global attack detection paradigm with its BG counterpart with
increasing number of regions under attack. We fix the maximum
number of gossip rounds to 50 for each simulation case. We
observe that the blockchain outperforms the gossip algorithm by
a margin of approximately 20 simulation epochs. Figure 5 also
indicates that in case of BG the initial disparity of the GAP among
the regions decreases with an increase in the number of regions
under attack. Such a scenario results in marginal improvement in
the global attack detection.

As postulated by Theorem V.1, low initial error is preferred
for BG, which only happens when an increasing number of
regions are under attack. On the other hand, a high number of
gossip rounds are required for BG in order to overcome regional

5https://github.com/ethereum/EIPs/issues/225

connectivity constraints predicted by Theorem V.1. Both scenarios
highlight the operational obstacles associated with an information
diffusion scheme based on gossip. Figures 4, 5 conclusively show
that the blockchain based framework delivers a reliable, timely
and accurate detection as compared to its gossip counterpart in
diverse operational scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a decentralized blockchain based
global attack detection mechanism that only uses locally reported
alarm and its associated statistics to detect the onset of a global
replay attack. We design a novel Bayesian update mechanism
requiring one global multiplication and one global addition
leading to a scalable and computationally efficient blockchain
paradigm. We characterize the performance of the blockchain
based global attack detection mechanism against a broadcast
gossip based counterpart. In order to do so, we first reformu-
late the computation of the global multiplication and addition
operations to be amenable towards broadcast gossip. We then
theoretically analyze the performance of the broadcast gossip with
a limited precision blockchain version. Our analysis predicts an
overall computational superiority of the blockchain version as
opposed to the broadcast gossip. We implement and evaluate
the blockchain based approach on a private Ethereum network
with the help of Solidity for orchestrating the Smart Contracts.
Our experiments demonstrate the accuracy of the decentralized
detection mechanism as well as its robustness to increasing
number of regions. Moreover, our results also corroborate our
theoretical claim of computational superiority over the state-of-
the-art, decentralized broadcast gossip paradigm by a significant
margin. For our future work we plan to focus on local attacks
that could be mutually correlated. We also aim to investigate
a blockchain driven approach to distinguish between multiple
failure modes and an attack.
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“Towards blockchain-based collaborative intrusion detection systems,” in
International Conference on Critical Information Infrastructures Security.
Springer, 2017, pp. 107–118.

[51] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sas-
sone, “Pbft vs proof-of-authority: applying the cap theorem to permissioned
blockchain,” 2018.

[52] M. Salimitari and M. Chatterjee, “A survey on consensus protocols in
blockchain for iot networks,” arXiv preprint arXiv:1809.05613, 2018.

[53] “Proof-of-Authority Chains,” https://openethereum.github.io/
Proof-of-Authority-Chains, [Online; accessed 22-April-2021].

[54] R. Saltini and D. Hyland-Wood, “Ibft 2.0: A safe and live variation of the
ibft blockchain consensus protocol for eventually synchronous networks,”
arXiv preprint arXiv:1909.10194, 2019.

[55] B. D. Anderson and J. B. Moore, “Optimal filtering,” Englewood Cliffs,
vol. 21, pp. 22–95, 1979.

[56] M. Athans, “The role and use of the stochastic linear-quadratic-gaussian
problem in control system design,” IEEE Transactions on Automatic Control,
vol. 16, no. 6, pp. 529–552, 1971.

[57] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran, “An
overview on smart contracts: Challenges, advances and platforms,” Future
Generation Computer Systems, vol. 105, pp. 475–491, 2020.

APPENDIX A

We provide a description of all the characteristic features listed
in Table I for permissioned consensus mechanisms. The features
and their descriptions are as follows:
• Validators refers to the minimum number of entities required

for consensus to take place.
• Decentralization aspect characterizes the potential of a few

entities dominating over block creation.
• Fault tolerance describes the maximum number of entities that

must fail to jeopardize the blockchain operation.
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• Consistency refers to the final state of the distributed ledger
among multiple entities post consensus.

• Block latency characterizes the degree of communication re-
quired in order to mint a block.
Decentralization potential of Clique and Aura are deemed high

due to the fact that all participating entities are provided an
opportunity to propose blocks during run time [51]. In IBFT,
validators once chosen need to be added and removed explicitly
by a proposal followed by voting [54]. In Raft, if the leader
is malicious, then the entire blockchain can be compromised,
unless a change is effected using voting of the verifiers [52].
Therefore, the decentralization potential for IBFT and Raft is
deemed medium and low respectively.

With respect to consistency, Clique relies on the Ethereum
GHOST protocol to eventual resolve forks and achieve consis-
tency of the chain. However, Aura makes no such guarantees
[51]. On the other hand, IBFT emphasizes consistency over speed
resulting in a stalling in cases where a fork has emerged [51].
Raft meanwhile assumes that no forking can emerge on account
of there being only one leader [52]
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